
Introduction

The Genomics Research Group (GRG) generated data from hundreds
of individual SUM149PT cells treated with the histone deacetylase
inhibitor TSA vs. untreated controls across several scRNA-Seq
platforms (Fluidigm C1, WaferGen iCell8, 10X Genomics Chromium
Controller, and Illumina/BioRad ddSEQ). The goals of this project are
to demonstrate RNA sequencing (RNA-Seq) methods for profiling the
ultra-low amounts of RNA present in individual cells, and RNA
amplification using the various currently available platforms. We will
discuss the results of the study as well as technical challenges/lessons
learned and present general guidelines for best practices in sample
preparation and analysis.
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Table 1.  Cost analysis and key attributes of scRNA-seq platforms.  Costs were determined using list prices for each technology available through respective vendor.
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Figure 1. Basic metrics across experiments and platforms.
The number of genes detected across each technology (A). The number of single cells targeted vs the number of cells that passed filtering criteria of CPM >1 (B) and the amount of high
quality “usable” data passing quality filter threshold (C). Gene diversity across platform technologies based on down sampling to 20,000 reads per cell (D). Unique gene detection for each
platform based on sequencing depth (E).

Figure 2. Cell outlier detection using Scater automated parameters.
Principal components for outlier detection results identify from Scater automated QC for data generated with Fluidigm C1 (A), WaferGen iCell8 (B), 10X Genomics with immediate processing
(C), Fludigm HT (D), Illumina/BioRad ddSeq (E), or 10X Genomics with processing after overnight shipment (F). tSNE plots of single cell association based on treatment group (G).

Figure 3. TSA gene signature for Bulk RNA-Seq experimentation.  
PCA plot showing the relationship between DMSO and TSA treated SUM149PT cells from bulk 
TruSeq RNA-Seq (A).  Volcano plot showing the extent of significant differentially expression 
genes between DMSO and TSA, p<0.05 (B).  Heatmap of the 982 differentially expressed genes 
identified as statistically significant, p<0.05 (C). 

Figure 4. Correlation among single-cell RNA-Seq platform technologies.
Correlation of differential expression results between each platform and bulk RNA-Seq
results (A). Correlation of differential expression results across platform technologies
(B). Distribution of genes identified as differentially expression between DMSO vs TSA
across all platforms tested (C).

• Each platform technology has some tradeoffs, such as in cell efficiency, data usability,
or gene diversity.

• No platform reached gene detection saturation at sequencing depths tested, so all
perform equally well in sensitivity under the tested conditions.

• Some platforms showed higher degree of outliers and differing ability to resolve
treatment groups well.

• Using bulk RNA-Seq (TruSeq) as “ground truth”, a low concordance was observed for
differentially expressed genes across platforms.
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