TaKaRa
Á¦Ç°¸í/Á¦Ç°ÄÚµå
Å°¿öµå°Ë»ö
°Ë»ö
´Ý±â
  • °í°´Áö¿ø 
  • ¾÷¹«¾È³»¦¢Á¦Ç°¹®ÀÇ
  • ÀüÈ­¹øÈ£¦¢02-2081-2510
  • Email     ¦¢support@takara.co.kr
  • ´ëÀüÁö»ç 
  • ¾÷¹«¾È³»¦¢´ëÀü/ÃæûÁö¿ª ÁÖ¹®, Á¦Ç°¹®ÀÇ
  • ÀüÈ­¹øÈ£¦¢042-828-6525
  • Email     ¦¢tkbd@takara.co.kr
  • ¾÷¹«½Ã°£¾È³»
  • [ Æò¡¡¡¡ÀÏ ] 09 : 00 ~ 18 : 00 ¦¢ [ Á¡½É½Ã°£ ] 12 : 00 ~ 13 : 00
  • Å䡤ÀÏ¿äÀÏ, °øÈÞÀÏÀº ÈÞ¹«ÀÔ´Ï´Ù.
Home > ÀüÁ¦Ç°º¸±â > Stem Cell > Mouse stem cell °ü·Ã Á¦Ç° > [Àû¿ë] NDiff 227À» ÀÌ¿ëÇÑ mouse organoid Á¦ÀÛ

[Àû¿ë] NDiff 227À» ÀÌ¿ëÇÑ mouse organoid Á¦ÀÛ

-

Generation of embryonic organoids using NDiff 227 neural differentiation medium


Data kindly provided by Susanne van den Brink, PhD student at Alexander van Oudenaarden laboratory, Hubrecht Institute, Utrecht, Netherlands
  • Mouse embryonic stem cell (mESC)·ÎºÎÅÍ ¸¹Àº ¼öÀÇ gastruloids (embryonic organoid)¸¦ °£´ÜÇÏ°Ô Á¦ÀÛÇÏ´Â ¹æ¹ý
  • in vitro¿¡¼­ Mouse ¹è¾Æ ¹ß´Þ °úÁ¤ÀÇ high-throughput ºÐ¼®
  • ÀÌ½Ä ÈÄ, mouse ¹è¾Æ¿Í À¯»çÇÑ 80~90% ÀÌ»óÀÇ ±ä ÇüÅÂÀÇ ÀÀÁýü Çü¼º È®ÀÎ
  • ÃÖ´ë 50% Á¤µµÀÇ ÀÀÁýü¿¡¼­ somite¿Í °°Àº ±¸Á¶·Î À¯µµµÊÀ» È®ÀÎ

[ Introduction ]
ÃʱâÀÇ ¹è¾Æ ¹ß´Þ °úÁ¤¿¡¼­ ¼¼Æ÷ °£ »óÈ£ÀÛ¿ëÀ» ÅëÇØ ÀÛ°í ±ÕÀÏÇÑ ¼¼Æ÷ ±ºÁýÀ» 3Â÷¿øÀÇ ´Ù¼¼Æ÷ organismÀÌ µÇµµ·Ï Á¶ÀýÇÑ´Ù. ÀÌ·¯ÇÑ ¹è¾Æ ¹ß´Þ °úÁ¤¿¡¼­ ³ªÅ¸³ª´Â ¿À·ù´Â ¹ß´Þ ÀÌ»óÀ¸·Î À̾îÁú ¼ö ÀÖÁö¸¸, ÀÌ·± ºñÁ¤»óÀûÀÎ Áõ»óÀÌ ¾ðÁ¦, ¾î¶»°Ô À¯¹ßµÇ´ÂÁö´Â °ÅÀÇ ¾Ë·ÁÁø ¹Ù°¡ ¾ø´Ù. ¸¶¿ì½º¿Í °°Àº µ¿¹°¸ðµ¨À» ÅëÇØ ´ëºÎºÐÀÇ ¹è¾Æ ¹ß´Þ °úÁ¤¿¡ ´ëÇÑ ¿¬±¸°¡ ÁøÇàµÇ¾î ¿ÔÁö¸¸, ¸¶¿ì½º ¹è¾Æ¸¦ Àå±âÀûÀ¸·Î ¹è¾çÇÏ°í, È®ÀÎÇÏ´Â °ÍÀº ±â¼úÀûÀÎ ÇÑ°è°¡ ÀÖ¾ú´Ù. °Ô´Ù°¡, À¯ÀüÀÚ°¡ Á¶ÀÛµÈ ¹è¾Æ¸¦ Á¦ÀÛÇÏ´Â °ÍÀº ½Ã°£ÀÌ ¸¹ÀÌ ¼Ò¿äµÉ »Ó ¾Æ´Ï¶ó ºñÈ¿À²ÀûÀ̸ç, Å« ±Ô¸ðÀÇ ¿ä±¸µÇ´Â À¯ÀüÀÚ ¶Ç´Â ¾à¹° ½ºÅ©¸®´× ºÐ¼®À» À§ÇØ ¸¶¿ì½º ¹è¾Æ¸¦ ´ë·®À¸·Î ¾ò´Â °ÍÀÌ ¾î·Æ´Ù´Â ÇÑ°è°¡ ÀÖ´Ù.
¸¶¿ì½º ¹è¾Æ·ÎºÎÅÍ À¯·¡ÇÑ mouse embryonic stem cell (mESC) ¿¬±¸°¡ ¹ß´ÞÇϸ鼭, À§ÀÇ ÇѰ踦 ±Øº¹ÇÏ°í in vitro »ó¿¡¼­ pluripotency¸¦ À¯ÁöÇÔ°ú µ¿½Ã¿¡ large-scaleÀÇ ¹è¾Æ ¹ß´Þ ¿¬±¸¸¦ °¡´ÉÄÉÇß´Ù. ÀÌÈÄ·Î 2Â÷¿ø°ú 3Â÷¿øÀÇ mESC ¹è¾ç ½Ã½ºÅÛÀÌ °³¹ßµÇ¾úÁö¸¸, ¹è¾ÆÀÇ º¹ÀâÇÑ 3D ÇüŸ¦ Á¤È®ÇÏ°Ô ÀçÇöÇØ ³»Áö ¸øÇß´Ù. µû¶ó¼­, ÀÌ·± ¹è¾ç ½Ã½ºÅÛµéÀº ¹è¾ÆÀÇ ¹ß´Þ °úÁ¤¿¡ °ü¿©ÇÏ´Â ¹è¾Æ³ª ¹è¿± °£ÀÇ 3D »óÅ¿¡¼­ÀÇ »óÈ£ÀÛ¿ëÀ̳ª ÇüÅÂÀû Àç¹è¿­, ȤÀº ¹è¾ÆÀÇ organ ºÐÈ­ °úÁ¤À» ¿Ïº®ÇÏ°Ô ÀÌÇØÇϱâ À§Çؼ­´Â »ç¿ëµÇ±â ¾î·Á¿ü´Ù.
ÀÌ ÇѰ踦 ±Øº¹Çϱâ À§ÇØ, ³×´ú¶õµå Hubrecht InstituteÀÇ Susanne van den Brink¿Í µ¿·áµéÀº mESC¸¦ ÀÌ¿ëÇØ organoid ±¸Á¶ÀÇ 3D ¹è¾ç¹ýÀ» °³¹ßÇÏ¿´´Ù. Gastruloids ±¸Á¶´Â »ï¹è¿±À̳ª body axis¿Í °°ÀÌ ¹è¾Æ ÀÌ½Ä ÈÄ¿¡ º¸ÀÌ´Â Çö»óµéÀ» º¸¿´´Ù (van den Brink et al. 2014; Turner et al. 2017; Beccari et al. 2018; van den Brink et al. 2020). ÀÌ·¯ÇÑ ±¸Á¶¸¦ Á¦ÀÛÇس»±â À§ÇØ, ¿¬±¸ÀÚµéÀº Takara BioÀÇ NDiff 227 ¹è¾ç ¹èÁö¸¦ ÀÌ¿ëÇØ Ãʱ⠹è¾Æ ´Ü°è¿Í À¯»çÇϵµ·Ï mESC¸¦ È¿À²ÀûÀ¸·Î ÀÀÁýÇÏ°í ÀçÇö¼º ³ô°Ô ºÐÈ­ ½ÃÅ°°íÀÚ Çß´Ù. ÀÌÈÄ¿¡ Wnt agonist¸¦ Àû¿ëÇÏ¿©, ÀÌ ÀÀÁýü´Â Á¡Â÷ ±æ¾îÁö¸é¼­ ¸Ó¸®¿Í ²¿¸®¸¦ ÀÌ·ç´Â Àü-ÈÄ body axis¿¡ µû¶ó ÀûÀýÇÑ À§Ä¡¿¡ ±¸Á¶Ã¼°¡ Çü¼ºµÊÀ» È®ÀÎÇÏ¿´´Ù. ÀÌ¿Í °°ÀÌ ¹è¾Æ ¹ß´Þ °úÁ¤À» ÀçÇöÇÏ´Â organoid ±¸Á¶´Â gastruloids¶ó°í ºÒ¸®¸ç, in vitro »ó¿¡¼­ ¸¶¿ì½º ¹è¾Æ ¹ß´ÞÀ» ¿¬±¸ÇÏ´Â µ¥ »ç¿ëµÉ ¼ö ÀÖ´Ù.

[ Results ]
NDiff 227´Â defined, serum-free ¹èÁö·Î, mESC¸¦ adherent monocultureÇÏ¿© neural lineage·Î ºÐÈ­ ½ÃÅ°±â À§ÇØ °³¹ßµÇ¾ú´Ù (Ying et al. 2003). ±×·¯³ª ¿¬±¸ÀÚµéÀº NDiff 227 ¹èÁö°¡ mESC·ÎºÎÅÍ 3D embryo-like organoid structure (gastruloids)¸¦ ³ôÀº ÀçÇö¼ºÀ¸·Î Çü¼ºÇÏ´Â µ¥¿¡µµ È¿°úÀûÀ̸ç, À̸¦ in vitro ³»¿¡¼­ ¹è¾Æ ¹ß´Þ¿¡ ´ëÇÑ ¿¬±¸¸¦ high-throughput À¸·Î Àû¿ëÇÒ ¼ö ÀÖÀ½À» »õ·Ó°Ô È®ÀÎÇÏ¿´´Ù.
ÀÌ ÇÁ·ÎÅäÄÝ¿¡¼­´Â ºÎÂø¼ºÀÌ ³·Àº U-bottom 96 well plateÀÇ °¢ well¿¡ 300°³ °¡·®ÀÇ mESC¸¦ ºÐÁÖÇÏ°í, NDiff 227 ¹èÁö¿¡¼­ ¹è¾ç ¹× ÀÀÁý½ÃÄ×´Ù (Figure 1). ºÐÁÖ ÈÄ 2ÀÏ µ¿¾È¿¡´Â ¼¼Æ÷´Â ¼¼Æ÷³¢¸® ÀÀÁýµÇ¾î ÇϳªÀÇ ±¸ÇüÀ» ÀÌ·ç¸ç, °¢ wellÀÇ ¹Ù´Ú¿¡ °¡¶ó¾É°Ô µÈ´Ù. ÀÌÈÄ ¹è¾ç 3ÀÏÂ÷¿¡ Wnt-agonist Chiron (CHIR99021)À» ó¸®ÇÏ¿© 24½Ã°£ ¹è¾çÇÏ°Ô µÇ´Âµ¥, óÀ½ ºÐÁÖÇÑÁö 4~5ÀÏÂ÷ ÁîÀ½¿¡ ±¸ÇüÀ¸·Î ´ëĪÀ» ÀÌ·ç¾ú´ø ÇüÅ°¡ ±æÂßÇÑ ÇüÅ·Πº¯È­ÇÑ´Ù. ÀÌ ±¸Á¶´Â ½Ã°£ÀÌ Áö³²¿¡ µû¶ó Á¡Â÷ À§¾Æ·¡·Î ´õ ±æ¾îÁö´Â ÇüŸ¦ º¸¿´À¸¸ç (van den Brick et al. 2014), ¸¶¿ì½º ¹è¾Æ¿¡¼­ Çü¼ºÇÏ´Â ¼¼Æ÷ À¯ÇüÀÌ »ý¼ºµÇ°í ¸Ó¸®¿Í ²¿¸®¸¦ ÀÌ·ç´Â Àü-ÈÄ body axis¿¡ µû¶ó °¢ Á¤È®ÇÑ À§Ä¡¿¡ ¹èÄ¡µÇ´Â °ÍÀÌ È®ÀεǾú´Ù (van den Brick et al. 2020). ÀÌ·¸°Ô »ý¼ºµÈ ±¸Á¶Ã¼´Â ½Åü¸¦ ±¸¼ºÇÏ´Â »ï¹è¿±À¸·ÎÀÇ ºÐÈ­ ¶ÇÇÑ È®ÀεǾú´Ù.

±×¸² 1. mESC·ÎºÎÅÍ gastruloids°¡ Çü¼ºµÇ´Â °úÁ¤
Gastruloids are produced by plating 300 mouse ES cells per well in NDiff 227 medium in a U-bottomed 96-well plate. After seeding, the plates are placed in the incubator for 48 hr. During the incubation, the cells sink to the bottom of the well and stick together to form a round aggregate. At 48 hr, NDiff 227 medium is supplemented with the Wnt-agonist Chiron (Chi), which induces a symmetry-breaking event. At 72 hr, the Chiron-supplemented NDiff 227 medium is replaced with plain NDiff 227 medium. Between 96 and 120 hr after aggregation, the aggregates elongate and form an embryonic organoid that contains all three germ layers and all three body axes. Optional: adding 10% Matrigel to gastruloids at 96 hr after aggregation induces the formation of somite-like structures and results in gastruloids that resemble mouse embryos more closely. Approximate hands-on time per 96-well plate for each step is indicated within brackets.

2014³â¿¡ van den Brink et al. ¹®Çå¿¡¼­ óÀ½À¸·Î ¼Ò°³ÇÑ gastruloids Á¦ÀÛ ¹æ¹ýÀº ±æÂßÇÑ ÇüÅÂÀÇ ±¸Á¶¹°Àº Çü¼ºÇÏ¿´À¸³ª ¸¶¿ì½º ¹è¾Æ¿¡¼­ º¸ÀÌ´Â ¹ß´Þ°úÁ¤ÀÇ ¾ç»óÀ» ¸ðµÎ È®ÀÎÇϱ⿡´Â ÃæºÐÄ¡ ¾Ê¾Ò´Ù. ƯÈ÷ ¸¶¿ì½º ¹è¾Æ¿Í ´Þ¸® gastruloids·ÎºÎÅÍ somite (¹è¾Æ µÚÂÊ¿¡ ÁÙÁö¾î ÀÖ´Â Á¶Á÷ ºí·ÏÀ¸·Î, ôÃß¿Í °¥ºñ»À¿Í °°Àº °ñ°ÝÀ» Çü¼ºÇÔ)°¡ »ý¼ºµÇÁö ¾Ê´Â ´Ù´Â °ÍÀÌ °¡Àå Å« ÇÑ°è¿´´Ù. ±×·¯³ª 2020³âµµ¿¡ ¹ßÇ¥ÇÑ ¹®Çå¿¡¼­ ¿¬±¸ÀÚµéÀº ¹è¾ç 96½Ã°£ ÈÄ ³·Àº ºñÀ²ÀÇ MatrigelÀ» ÀÀÁýµÈ ¼¼Æ÷ ±¸Á¶¿¡ ÷°¡ÇÔÀ¸·Î½á somite¿Í À¯»çÇÑ Á¶Á÷À» À¯µµÇÒ ¼ö ÀÖÀ½À» ¹ß°ßÇß´Ù. MatrigelÀÇ Ãß°¡·Î, ¸¶¿ì½º ¹è¾Æ¸¦ º¸´Ù Á¤È®ÇÏ°Ô ÀçÇöÇÑ gastruloids¸¦ »ý¼ºÇÒ ¼ö ÀÖ°Ô µÇ¾úÀ¸¸ç (±×¸² 2), NDiff 227 ¹èÁö¸¦ ÀÌ¿ëÇØ in vitro »ó¿¡¼­ ¸¹Àº ¼öÀÇ gastruloids¸¦ È¿À²ÀûÀ¸·Î ¾òÀ» ¼ö ÀÖÀ½À» º¸¿©ÁØ´Ù.

±×¸² 2. Multi-photon microscopy·Î ÃÔ¿µÇÑ In vitro gastruloidÀÇ somite À¯»ç ±¸Á¶
A mouse gastruloid was embedded in 10% Matrigel at 96 hr, later stained for Uncx4.1 (which marks the posterior half of somites), and then visualized at 120 hr using hybridization chain reaction (HCR) imaging. Pink arrowheads point at the boundaries between the individual somites. A: anterior (head); P: posterior (tail). Scale bar = 100 ¥ìm. Image credit: Vincent van Batenburg.

[ Conclusions ]
Van Oudenaarden ¿¬±¸½ÇÀÇ ¿¬±¸ÀÚµéÀº ´ÙÄ«¶ó¹ÙÀÌ¿ÀÀÇ neural ºÐÈ­¸¦ À§ÇÑ NDiff 227 ¹èÁö°¡ in vitro »ó¿¡¼­ mESC·ÎºÎÅÍ embryonic organoid (gastruloid)¸¦ È¿À²ÀûÀÌ°í ÀçÇö¼º ÀÖ°Ô Á¦ÀÛÇÒ ¼ö ÀÖ¾î, ¹è¾Æ ¹ß´Þ°úÁ¤ÀÇ ¿¬±¸¸¦ ´ë·®À¸·Î ÁøÇàÇÏ´Â µ¥ À¯¿ëÇÔÀ» Áõ¸íÇÏ¿´´Ù. GastruloidÀÇ »ý»êÀº ±âÁ¸¿¡ »ç¿ëµÇ´ø ¹æ¹ý°ú ºñ±³ÇßÀ» ¶§ ¶Ñ·ÇÇÑ ÀåÁ¡À» º¸¿´´Ù; (1) ¸¶¿ì½º ¹è¾Æº¸´Ù À¯ÀüÁ¤º¸¸¦ ±³Á¤Çϱ⿡ ¼ö¿ùÇÔ (2) Body axis Çü¼º°ú °°ÀÌ ±âÁ¸ÀÇ in vitro ¹è¾ç ½Ã½ºÅÛ¿¡¼­´Â ¾î·Á¿ü´ø ±¸Á¶¸¦ Çü¼ºÇϸ鼭, ÀÌ¿¡ ´ëÇÑ ¿¬±¸¸¦ °¡´ÉÄÉ ÇÔ (3) º¸´Ù ¼Õ½±°Ô ´ë·®ÀÇ gastruloid¸¦ Á¦ÀÛÇÒ ¼ö ÀÖ¾î ¾à¹° ½ºÅ©¸®´×°ú °°Àº large-scaleÀÇ ½ÇÇè¿¡µµ Àû¿ë °¡´ÉÇÔ
Gastruloid¸¦ Á¦ÀÛÇÏ´Â ÇÁ·ÎÅäÄÝÀº ÀϹÝÀûÀ¸·Î »ç¿ëµÇ´Â ¹è¾ç Àåºñ¸¸À» ÀÌ¿ëÇϸ鼭 ÃÖ¼ÒÇÑÀÇ ¼¼Æ÷ ¹è¾ç °æÇ踸ÀÌ ÀÖ´õ¶óµµ ºü¸£°í °£´ÜÇÏ°Ô Àû¿ëÇÒ ¼ö ÀÖÀ¸¸ç, ´Ù¸¥ ½ÇÇè½Ç¿¡¼­ ÀÌ in vitro ½Ã½ºÅÛÀ» ÀÌ¿ëÇÏ´õ¶óµµ °¢ batchº° ½ÇÇè ¿ÀÂ÷°¡ Àû¾î ÀçÇö¼ºÀÌ ³ôÀº °á°ú¸¦ ¾òÀ» ¼ö ÀÖ´Ù.

[ Methods ]
mESC´Â 37¨¬C; 5% CO2 incubator ³»¿¡¼­ serum°ú leukemia inhibitory factor (LIF) Á¶°ÇÀ¸·Î ¹è¾çµÇ¾î Áø´Ù. ¼¼Æ÷ ÀÀÁýÀ» ÁøÇàÇϱâ Àü¿¡, °¢ ¼¼Æ÷µéÀº trypsinÀ¸·Î well¿¡¼­ ¶¼¾î³½ ÈÄ, PBS·Î washingÇÑ ÈÄ Takara Bio.ÀÇ NDiff 227 ¹èÁö¿¡¼­ resuspension µÈ´Ù. °¢°¢ÀÇ 300°³ Á¤µµÀÇ ¼¼Æ÷¸¦ U-bottom 96 well¿¡ ºÐÁÖÇÏ°í, 40 §¡ÀÇ NDiff 227 À» ÷°¡ÇÏ¿© 48½Ã°£µ¿¾È ¹è¾çÇÑ´Ù. ÀÌ ±â°£ µ¿¾È ¼¼Æ÷´Â ÇϳªÀÇ ±¸Çü ÀÀÁýü¸¦ Çü¼ºÇÏ¿© °¢ well ¹Ù´Ú¿¡ °¡¶ó ¾É°Ô µÈ´Ù. ¹è¾ç 48½Ã°£ ÈÄ, 3 uM Chiron (CHIR99021)À» Æ÷ÇÔÇÏ´Â 150 ulÀÇ NDiff 227 ¹èÁö¸¦ multichannel pipetteÀ» ÀÌ¿ëÇØ Ã·°¡ÇÏ°í, 24½Ã°£ µ¿¾È Ãß°¡·Î ¹è¾çÇÑ´Ù. ÀÌÈÄ ChironÀ» Æ÷ÇÔÇÏ´Â NDiff 227 ¹è¾ç ¹èÁö¸¦ well¿¡¼­ Á¦°ÅÇÏ°í, ChironÀ» Æ÷ÇÔÇÏÁö ¾Ê´Â »õ·Î¿î NDiff 227 ¹èÁö 150 §¡·Î ±³Ã¼ÇÏ¿© 24½Ã°£ µ¿¾È Ãß°¡·Î ¹è¾çÇÑ´Ù. ¹è¾ç ÈÄ ÃÑ 96½Ã°£ÀÌ Áö³­ ÈÄ¿¡´Â ¹èÁö´Â ¸¶Áö¸·À¸·Î »õ·Î¿î NDiff 227 ¹èÁö 150 §¡·Î ±³Ã¼ÇÏ°Ô µÇ°í, ¹è¾ç ÈÄ ÃÑ 120½Ã°£ÀÌ Áö³­ ÈÄ¿¡´Â 80-90 % Á¤µµÀÇ ÀÀÁýü¿¡¼­ ¹è¾Æ¿Í À¯»çÇÑ ±æÂßÇÑ ÇüŸ¦ È®ÀÎÇÒ ¼ö ÀÖ´Ù.

¼±ÅûçÇ×) ÀÀÁý 96½Ã°£ ÈÄ¿¡ NDiff 227 ¹èÁö¿¡ 10% MatrigelÀ» ÷°¡ÇÏ°Ô µÇ¸é, ÃÖ´ë 50% Á¤µµÀÇ ÀÀÁýü¿¡¼­ somite¿Í À¯»çÇÑ ±¸Á¶ÀÇ Çü¼ºÀ» À¯µµÇÒ ¼ö ÀÖ´Ù. Somite¿Í °°Àº ±¸Á¶Ã¼¸¦ Æ÷ÇÔ/Æ÷ÇÔÇÏÁö ¾Ê´Â gastruloidÀÇ Á¦ÀÛ ÇÁ·ÎÅäÄÝÀº ¾Æ·¡ÀÇ ³í¹®¿¡¼­ È®ÀÎÇÒ ¼ö ÀÖ´Ù. ÀÌÀü ¹öÀüÀÇ ÇÁ·ÎÅäÄÝÀº ºñµð¿À ÇüÅ·ΠȮÀÎÇÒ ¼ö ÀÖ´Ù.

- [METHOD ARTICLE] Generating gastruloids with somite-like structures from mouse embryonic stem cells (Ŭ¸¯)
- [Video] Generation of Aggregates of Mouse Embryonic Stem Cells that Show Symmetry Breaking, Polarization and Emergent Collective Behaviour In Vitro (Ŭ¸¯)

miPSC¸¦ ÀÌ¿ëÇÏ´Â °æ¿ì¿¡µµ, NDiff 227 ¹èÁö´Â ÀÀÁýü Çü¼º¿¡ Àû¿ë °¡´ÉÇÏ´Ù´Â °á°ú°¡ È®ÀεǸç, º¸´Ù ÀÚ¼¼ÇÑ miPSC ±â¹ÝÀÇ mouse gastruloid Á¦ÀÛ ÇÁ·ÎÅäÄÝÀº ¾Æ·¡¿¡¼­ È®ÀÎÇÒ ¼ö ÀÖ´Ù.
- [METHOD ARTICLE] Generating Gastruloids from Mouse Embryonic Stem Cells (Ŭ¸¯)

[ References ]
- Beccari, L. et al. Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids. Nat. Lett. 562, 272-276 (2018).
- van den Brink, S. C. et al. Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids. Nature 582, 405-409 (2020).
- van den Brink, S. C. et al. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development 141, 4231-42 (2014).
- Turner, D. A. et al. Anteroposterior polarity and elongation in the absence of extra-embryonic tissues and of spatially localised signalling in gastruloids: mammalian embryonic organoids. Development 144, 3894-3906 (2017).
- Ying, Q. et al. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotech. 21, 183-86 (2003).

[¿ø¹®] Generation of embryonic organoids using NDiff 227 neural differentiation medium