Cellartis human iPS cell-derived beta cells for diabetes drug discovery and disease modeling
´ÙÄ«¶ó¹ÙÀÌ¿À´Â ´ç´¢º´ ¹× ´ë»ç ÁõÈıº ¿¬±¸ ¸ðµ¨°ú ½Å¾à °³¹ßÀ» À§ÇÑ hiPSC À¯·¡ beta cellÀÇ Àû¿ë¼ºÀ» È®ÀÎÇÏ¿´´Ù.
Introduction
´ç´¢³ª ´Ù¸¥ ´ë»ç ÁõÈıºÀÇ ¿¬±¸ÀÚ¿¡°Ô Á¤È®ÇÏ°í ÀçÇö °¡´ÉÇÑ Áúº´ ¸ðµ¨ÀÇ Á¦ÀÛÀº ¾î·Á¿òÀ¸·Î ³²¾Æ ÀÖ´Ù. ÇöÀç±îÁö´Â Àν¶¸°À» »ý»êÇÏ´Â beta cellÀ» Æ÷ÇÔÇϴ ȣ¸£¸ó »ý»ê ¼¼Æ÷ ±ºÁýÀÎ ÃéÀåÀÇ ¶û°Ô¸£Çѽº¼¶ (primary pancreatic islets of Langerhans)À» gold standard·Î »ç¿ëµÇ°í ÀÖ´Ù. ´Ù¸¸ ÀÌ Primary cellÀº »ùÇÃÀ» È®º¸ÇϱⰡ ¾î·Æ°í ºñ¿ëÀÌ ¸¹ÀÌ ¼Ò¿äµÉ »Ó ¾Æ´Ï¶ó, À¯·¡ÇÑ donorÀÇ À¯ÀüÀû Â÷ÀÌ·Î ÀÎÇØ ½ÇÇè °á°ú¿¡ º¯µ¿ÀÌ »ý±æ ¼ö ÀÖ´Ù. À̸¦ ´ëüÇϱâ À§ÇØ ´ÜÀÏ ±âÁõÀÚ¿¡¼ À¯·¡ÇÑ hiPSC·ÎºÎÅÍ ºÐÈÇÑ beta cellÀÌ ½Å¾à °³¹ßÀ» À§ÇÑ È¿°úÀûÀÎ ½ºÅ©¸®´×°ú insulin »ý»ê ¹× ºÐºñ¿¡ ´ëÇÑ »ý¸®ÇÐÀû ½ÇÇè ¸ðµ¨·Î »ç¿ëµÉ ¼ö ÀÖ´Ù.
ÀÏ°üÀûÀÌ°í ½Å·Úµµ ³ôÀº Beta cell °ø±ÞÀ» À§ÇØ, ´ÙÄ«¶ó¹ÙÀÌ¿À´Â ÃéÀå ¹ß´Þ °úÁ¤À» ¸ð¹æÇÏ´Â ¹è¾ç Á¶°ÇÀ» ÃÖÀûÈÇÑ 4 stepÀÇ Ç¥ÁØ ºÐÈ ÇÁ·ÎÅäÄÝÀ» °³¹ßÇÏ¿´´Ù (
±×¸² 1). hiPSC´Â ¸ÕÀú ³»¹è¿± ¼¼Æ÷ (definitive endoderm cell)·Î ºÐȵǰí, ÀÌÈÄ pancreatic endoderm, endocrine progenitor cell ´Ü°è¸¦ °ÅÃÄ ÃÖÁ¾ÀûÀ¸·Î ¼º¼÷ÇÑ beta cell·Î ºÐÈ°¡ ¿Ï·áµÈ´Ù.
±×¸² 1. hiPSCÀÇ beta cell ºÐÈ °úÁ¤
Our differentiation strategy is based on a four-step protocol that resembles normal embryonic development of beta cells. hiPS cells are first differentiated into Sox17-positive definitive endoderm. Following endodermal commitment, the cells are further differentiated into Pdx1/Nkx6.1 double-positive pancreatic endoderm. Next, differentiation continues into endocrine progenitor cells, which are Ngn3/Nkx2.2 double-positive. Finally, the progenitors mature into terminally differentiated beta cells that are double positive for C-peptide and MafA. Abbreviations: Sox17 = SRY (sex determining region Y)-box 17; Pdx1 = pancreatic and duodenal homeobox 1; Nkx6.1 = NK6 homeobox 1; Ngn3 = Neurogenin 3; Nkx2.2 = NK2 homeobox 2; C-peptide = Connecting peptide; and MafA = MAF BZIP Transcription Factor A.
´ÙÄ«¶ó¹ÙÀÌ¿À´Â ¼·Î ´Ù¸¥ Donor·ÎºÎÅÍ ¾òÀº hiPSC (ChiPSC12, ChiPSC22)·ÎºÎÅÍ ºÐÈµÈ ÃÑ µÎ Á¾ÀÇ hiPSC À¯·¡ beta cellÀ» ÆǸÅÇÏ°í ÀÖÀ¸¸ç, Á¦Ç°Àº ¼¼Æ÷¿Í coating substrate, basal media, supplement¸¦ Æ÷ÇÔÇÑ all-in-one ÇüÅ·ΠÁ¦°øµÈ´Ù.
Áö¼ÓÀûÀÎ »ý»êÀÌ °¡´ÉÇÑ Cellartis
¢ç beta cellÀº ¼º¼÷ÇÑ beta cell¿¡¼ ³ªÅ¸³ª´Â Ư¡À» °¡Áú »Ó¸¸ ¾Æ´Ï¶ó, lot¿¡ µû¸¥ Â÷À̸¦ ÃÖ¼ÒÈ ÇÏ¿´°í, °³ÀÎ °£ÀÇ Â÷À̸¦ ¹Ý¿µÇÏ´Â ±â´É Æò°¡°¡ °¡´ÉÇϱ⿡ ½ÇÇè¿¡ ³ôÀº ½Å·Ú¼ºÀ» ºÎ¿©ÇÑ´Ù. ´ç´¢º´ ¿¬±¸ÀÚµéÀº Donor HLA type¿¡ µû¸¥ º¯À̸¦ ¿¬±¸ÇÒ ¼ö ÀÖÀ¸¸ç, ¿ªÇÐ ¿¬±¸¿¡ µû¸£¸é HLA-A*02:01À» Æ÷ÇÔÇÏ´Â class ¥° ´ë¸³ À¯ÀüÀÚ°¡ 1Çü ´ç´¢º´¿¡ ´ëÇÑ °¨¼ö¼ºÀ» Áõ°¡½Ãų ¼ö ÀÖ´Ù°í ¾Ë·ÁÁ® ÀÖ´Ù (Marron
et al. 2002). C12¿Í C22ÀÇ HLA typeÀº
Ç¥ 1¿¡¼ È®ÀÎÇÒ ¼ö ÀÖ´Ù.
Cellartis hiPS Beta Cells (from ChiPSC12) |
Cellartis hiPS Beta Cells (from ChiPSC22) |
HLA-A*01:01 |
HLA-A*02:01 |
HLA-B*08:01, HLA-B*37:01 |
HLA-B*07:02, HLA-B*40:01 |
HLA-C*06:02, HLA-C*07:01 |
HLA-C*03:04, HLA-C*07:02 |
HLA-DRB1*03:01, HLA-DRB1*11:04 |
HLA-DRB1*13:02, HLA-DRB1*14:01 |
HLA-DQB1*02:01, HLA-DQB1*03:01 |
HLA-DQB1*05:03, HLA-DQB1*06:04 |
HLA-DPB1*01:01, HLA-DPB1*04:01 |
HLA-DPB1*03:01, HLA-DPB1*04:01 |
Ç¥ 1. ChiPSC12¿Í ChiPSC22ÀÇ donor ¹× HLA type Á¤º¸
The beta cells originate from donors with different HLA types. ChiPSC12 was sourced from skin fibroblasts from a healthy 24-year-old European/North African male volunteer (76 kg/177 cm). ChiPSC22 was sourced from skin fibroblasts from a healthy 32-year-old European/North African male volunteer (74 kg/179 cm) with a diabetes-susceptible HLA type, HLA-A*02:01.
hiPS cell-derived beta cells express beta-cell-specific genes
´ÙÄ«¶ó¹ÙÀÌ¿À´Â ¼º¼÷ÇÑ Beta cell¿¡¼ Á¸ÀçÇÏ´Â °ÍÀ¸·Î ¾Ë·ÁÁø mRNA Àü»çü°¡ hiPSC À¯·¡ beta cell¿¡¼ ¹ßÇöÇÏ´Â Áö ¸ÕÀú ºÐ¼®ÇÏ¿´´Ù. hiPSC À¯·¡ beta cell¿¡¼ ¸ðµç Àü»çü°¡ È®ÀεǾúÀ¸¸ç, ¹ßÇö ¼öÁØÀ» primary ¶û°Ô¸£Çѽº¼¶ (islet of Langerhans)°ú ºñ±³ÇÏ¿´´Ù (±×¸² 2). ƯÈ÷, °¢ DonorÀÇ hiPSC À¯·¡ beta cellÀÇ ¸ðµç lot¿¡¼ À¯»çÇÑ ¼öÁØÀÇ mRNA ¹ßÇöÀ» È®ÀÎÇÏ¿´°í, lot °£ÀÇ ³ôÀº ÀçÇö¼ºÀ» ÀÔÁõÇÏ¿´´Ù.
±×¸² 2. hiPSC À¯·¡ beta cell¿¡¼ÀÇ ÁÖ¿ä mRNA ¹ßÇö
mRNA expression analysis, as quantified by RNA-seq, was performed on Cellartis beta cells from C12 and C22 on Day 14 post-thawing (n = 3 batches per cell line) and on primary islets (n = 5 donors). Data are presented as the mean values ¡¾ SEM.
*
PDX1 = pancreatic and duodenal homeobox 1;
GCK = glucokinase; SLC2A1, SLC2A3 = Solute Carrier Family 2 Member 1 and 3
; MAFB = MAF BZIP Transcription Factor B;
NKX2.2 = NK2 homeobox 2;
NKX6.1 = NK6 homeobox 1; and NEUROD1 = Neurogenic differentiation 1.
hiPS cell-derived beta cells synthesize insulin
Beta cellÀÇ ÁÖ¿ä ±â´ÉÀº insulinÀ» ÇÕ¼ºÇÏ°í ºÐºñÇÏ´Â °ÍÀ¸·Î, insulin ÇÕ¼º °úÁ¤À» »ìÆ캸¸é proinsulinÀÌ C-peptide ºÐÀÚ Çϳª¿Í insulin ºÐÀÚ Çϳª, Áï 1:1·Î ³ª´µ¾î Áø´Ù (Ashby & Frier 1981; Horwitz
et al. 1975). µû¶ó¼, C-peptide¿Í insulinÀÇ µ¿½Ã ¹ßÇöÀÌ insulin »ý»ê ´É·ÂÀÇ Æò°¡ ÁöÇ¥·Î Æò°¡µÉ ¼ö ÀÖ´Ù.
±×¸² 3¿¡¼ C12¿Í C22 À¯·¡ beta cell ¸ðµÎ¿¡¼ C-peptide¿Í Àν¶¸°ÀÇ ¹ßÇöÀÌ ³ôÀº »ó°ü°ü°è¸¦ º¸ÀÓÀ¸·Î½á, ¼¼Æ÷°¡ insulin »ý»ê ´É·ÂÀ» °®Ãß¾ú´Ù´Â °ÍÀ» È®ÀÎÇÒ ¼ö ÀÖ´Ù.
±×¸² 3. hiPSC À¯·¡ beta cell¿¡¼ÀÇ insulin ÇÕ¼º
Staining for C-peptide and insulin was performed by immunofluorescence on Cellartis beta cells at Day 14 post-thawing. Colocalization of insulin and C-peptide indicates intracellular insulin synthesis. Scale bar = 100 §.
hiPS cell-derived beta cells express key markers of mature beta cells
¸î¸î Àü»ç ÀÎÀÚµéÀº Beta cellÀÇ ¹ß´Þ, Áõ½Ä, ±â´É¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϸç, ¼º¼÷ÇÑ beta cellÀº Pdx1, Nkx6.1, Àν¶¸°À» ¹ßÇöÇÑ´Ù. Pdx1Àº beta cellÀÇ ¼ö¸íÀ» Á¶ÀýÇÏ´Â ¿ªÇÒ·Î, beta cellÀÌ ¹ßÇöÇÏ´Â À¯ÀüÀÚ¸¦ È°¼ºÈ ÇÏ°í alpha cell¿¡¼ ¹ßÇöÇÏ´Â À¯ÀüÀÚ¸¦ ¾ïÁ¦ÇÑ´Ù (Gao
et al. 2014). ¹Ý¸é Nkx6.1ÀÌ °áÇÌµÈ ¼¼Æ÷ÀÇ °æ¿ì delta cellÀÇ ºÐÀÚÀû Ư¼ºÀ» º¸Àδ٠(Taylor, Liu, and Sander 2013).
MafA´Â ¼º¼÷ÇÑ beta cell marker·Î½á, ºÐÈ °úÁ¤¿¡¼´Â ¹ßÇöµÇÁö ¾Ê¾Æ ´Ù¸¥ Àü»ç ÀÎÀÚ¿Í È®¿¬È÷ ±¸ºÐµÈ´Ù. ¶ÇÇÑ Insulin°ú Nkx6.1ÀÌ µ¿½Ã ¹ßÇöÇÏ´Â °ÍÀ¸·Î ¼º¼÷ÇÑ hiPSC À¯·¡ beta cell¸¦ È®ÀÎÇÒ ¼ö ÀÖ´Ù (Ma
et al. 2018; Pagliuca
et al. 2014; Rezania
et al. 2014).
±×¸² 4¿¡¼´Â Cellartis
¢ç beta cell¿¡¼ insulin°ú C-peptide¿Í ÇÔ²² ÁÖ¿ä beta cell markerÀÎ Nkx6.1, Pdx1, MafA°¡ ¹ßÇöµÊÀ» È®ÀÎÇÒ ¼ö ÀÖ´Ù.
±×¸² 4. hiPSC À¯·¡ beta cell¿¡¼ È®ÀÎÇÑ key beta cell proteinÀÇ µ¿½Ã ¹ßÇö
Staining for insulin and Nkx6.1
(Panel A), insulin and Pdx1
(Panel B), and C-peptide and MafA
(Panel C) was performed on beta cells on Day 14 post-thawing. Scale bar = 100 §.
»Ó¸¸ ¾Æ´Ï¶ó, flow cytometryÀ» ÀÌ¿ëÇÏ¿© insulin°ú Nkx6.1¸¦ µ¿½Ã ¹ßÇöÇÏ´Â ¼¼Æ÷ÀÇ Á¤·® ºÐ¼® °á°ú¸¦
±×¸² 5¿¡¼ È®ÀÎÇÒ ¼ö ÀÖ´Ù. ƯÈ÷ insulin°ú Nkx6.1À» µ¿½Ã¿¡ ¹ßÇöÇÏ´Â ¼¼Æ÷ÀÇ °æ¿ì, C12°ú C22¿¡¼ ±× ºñÀ²ÀÌ ´Ù¸£°Ô ³ªÅ¸³µÀ¸¸ç, À̸¦ ÅëÇØ HLA type¿¡ µû¶ó ÀϺΠÀ¯ÀüÀÚ ¹ßÇö¿¡ Â÷À̸¦ È®ÀÎÇÒ ¼ö ÀÖ´Ù.
±×¸² 5. Insulin°ú Nkx6.1À» µ¿½Ã¿¡ ¹ßÇöÇÏ´Â hiPSC À¯·¡ beta cellÀÇ Á¤·® ºÐ¼®
Staining for insulin and Nkx6.1 was performed on beta cells from C12 or C22 on Day 14 post-thawing and analyzed by flow cytometry (FC). FC plots are shown for the analysis of one batch of beta cells from C22, with ~33% insulin/Nkx6.1 double-positive cells
(Panel A) and ~56% insulin-positive cells
(Panels A and B). Percentages of cells expressing insulin and coexpressing insulin/Nkx6.1 are shown for beta cells derived from C12 and C22, respectively
(Panel C). Data are presented as mean values ¡¾ SEM (n = 3 batches from each cell line).
[¿ø¹®] Cellartis human iPS cell-derived beta cells for diabetes drug discovery and disease modeling
[Âü°í¹®Çå]
- Ahren, B. Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes.
Nat. Rev. Drug Discov. 8, 369-385 (2009).
- Ashby, J. P. & Frier, B. M. Circulating C-peptide: measurement and clinical application. In
Ann. Clin. Biochem (Vol. 18) (1981).
- Bolognini, D.
et al. The Pharmacology and Function of Receptors for Short-Chain Fatty Acids.
Mol. Pharmacol. 89, 388-398 (2016).
- Gao, T.
et al. Pdx1 Maintains ¥â Cell Identity and Function by Repressing an ¥á Cell Program.
Cell Metab.
19, 259-271 (2014).
- Horwitz, D. L.
et al. Proinsulin, insulin, and C-peptide concentrations in human portal and peripheral blood.
J. Clin. Invest. 55, 1278-1283 (1975).
- Layden, B. T., Durai, V. & Lowe, W. L. G-Protein-Coupled Receptors, Pancreatic Islets, and Diabetes.
Nat. Educ.
3, 13 (2010).
- Liao, Y., Smyth, G. K. & Shi, W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote.
Nucleic Acids Res.
41, e108-e108 (2013).
- Ma, S.
et al. ¥â Cell Replacement after Gene Editing of a Neonatal Diabetes-Causing Mutation at the Insulin Locus.
Stem Cell Rep. 11, 1407-1415 (2018)
- Marron, M. P.
et al. Functional evidence for the mediation of diabetogenic T cell responses by HLA-A2.1 MHC class I molecules through transgenic expression in NOD mice.
Proc. Natl. Acad. Sci. U. S. A.
99, 13753-8 (2002).
- Pagliuca, F. W.
et al. Generation of Functional Human Pancreatic ¥â Cells In Vitro.
Cell 159, 428-439 (2014).
- Pertea, M.
et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads.
Nat. Biotechnol.
33, 290-295 (2015).
- Priyadarshini, M.
et al. An Acetate-Specific GPCR, FFAR2, Regulates Insulin Secretion.
Mol. Endocrinol.
29, 1055-66 (2015).
- Rezania, A.
et al. Reversal of diabetes with insulin-producing cells derived
in vitro from human pluripotent stem cells.
Nat. Biotechnol. 32, 1121-1133 (2014).
- Taylor, B. L., Liu, F. F. & Sander, M. Nkx6.1 is essential for maintaining the functional state of pancreatic beta cells.
Cell Rep.
4, 1262-75 (2013).
- Veprik, A.
et al. GPR41 modulates insulin secretion and gene expression in pancreatic ¥â-cells and modifies metabolic homeostasis in fed and fasting states.
FASEB J.
30, 3860-3869 (2016).
- Yaluri, N.
et al. Simvastatin Impairs Insulin Secretion by Multiple Mechanisms in MIN6 Cells.
PLoS One 10, e0142902 (2015).