A high-throughput method for single-cell ATAC-seq on the SMARTer ICELL8 Single-Cell System
Introduction
Epigenomic Á¤º¸´Â À¯ÀüÀÚ Á¶Àý¿¡ ´ëÇÑ Å« ÅëÂû·ÂÀ» Á¦°øÇÏÁö¸¸, µ¿ÀÏÇÑ À¯ÇüÀÇ ´ÜÀÏ ¼¼Æ÷¶óµµ µ¶Æ¯ÇÑ epigenomic profileÀ» °¡Áú ¼ö Àֱ⠶§¹®¿¡ ¸Å¿ì º¹ÀâÇÕ´Ï´Ù.
ÃÖ±Ù ¸î ³â µ¿¾È single cell NGS ¹æ¹ý¿¡ ÀÖ¾î¼ Å« ÁøÀüÀÌ ÀÌ·ç¾îÁ³Áö¸¸ ¿°»öÁú »óŸ¦ °Ë»çÇÏ´Â single cell Á¢±Ù¹ýÀº ¸Å¿ì º¹ÀâÇÏ°í 󸮷®ÀÌ ³·À¸¸ç ºñ¿ë ¶ÇÇÑ ÀûÁö ¾Ê½À´Ï´Ù.
ÃÖ±Ù Stanford UniversityÀÇ Greenleaf ¿¬±¸½ÇÀº Takara Bio USA, Inc.(TBUSA)¿Í °øµ¿À¸·Î SMARTer ICELL8 Single-Cell SystemÀ» »ç¿ëÇÏ¿© single cell·ÎºÎÅÍ sequencing library¸¦
preparationÇÏ´Â ¸Å¿ì °£´ÜÇÏ°í ½Å¼ÓÇÑ ATAC-seq workflow¸¦ °³¹ßÇß½À´Ï´Ù.ÀÌ ¹æ¹ýÀ» ÀÌ¿ëÇϸé chip»ó¿¡¼ workflow·Î 4~5½Ã°£ ¸¸¿¡ 1,000°³ ÀÌ»óÀÇ single cell¿¡¼ library¸¦ Á¦ÀÛÇÒ ¼ö ÀÖ½À´Ï´Ù.
Results
SMARTer ICELL8 systemÀÇ ATAC-seq workflow
SMARTer ICELL8 Single-Cell SystemÀº single cellÀ» 5,184-nanowell blank chip(±×¸² 1)À¸·Î ÀÚµ¿ ºÐ¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù. Hoechst¿Í propidium iodide ¿°»ö¹ýÀ» »ç¿ëÇÏ¿©
cell viabilityÀ» ºÐ¼®ÇÏ°í »ì¾ÆÀÖ´Â single cellÀÌ µé¾îÀÖ´Â wellÀ» CellSelect Software¸¦ »ç¿ëÇÏ¿© ÀÚµ¿À¸·Î ½Äº°ÇÏ¿© ¸ñÀûÇÏ´Â well¿¡¸¸ ½Ã¾àÀ» ºÐÁÖÇÕ´Ï´Ù. Tagmentation, index
Ãß°¡ ¹× PCR amplificationÀÌ chip»ó¿¡¼ (±×¸² 1)¿¡¼ ÁøÇàµÇ¹Ç·Î ±â¼úÀû °¡º¯¼ºÀ» ÃÖ¼ÒÈÇÏ°í 4-5½Ã°£ÀÇ °£´ÜÇÑ workflow¸¦ Á¦°øÇÕ´Ï´Ù. ±×·± ´ÙÀ½ PCR ampliconÀ» chip¿¡¼ ȸ¼ö,
poolingÇÏ¿©, size selection bead¸¦ »ç¿ëÇÏ¿© sequencing library¸¦ Á¦ÀÛÇÕ´Ï´Ù. (ÀÚ¼¼ÇÑ ÇÁ·ÎÅäÄÝÀº ÇÁ·ÎÅäÄÝ ÆäÀÌÁö¸¦ ÂüÁ¶ÇϽʽÿÀ).
±×¸²1. Schematic of the ATAC-seq workflow on the SMARTer ICELL8 system.
ATAC-seq reveals distinct cell populations based upon chromatin accessibility at transcription factor start sites
¸»ÃÊÇ÷¾× ´ÜÇÙ¼¼Æ÷(PBMC), B, CD4+T, CD8+T, monocyte ¹× T ¼¼Æ÷¸¦ ÀüÇ÷·Î ºÎÅÍ ºÐ¸®ÇÏ¿´´Ù. SMARTer ICELL8 ½Ã½ºÅÛÀ» ÀÌ¿ëÇÏ¿© Smartchip¿¡ dispenseÇÏ¿´½À´Ï´Ù. QC¸¦ Åë°úÇÑ
ÃÑ 2,333°³ÀÇ single cellÀ» »ç¿ëÇÏ¿© cell´ç Æò±Õ 14,000°³ÀÇ fragment·Î ¸Å¿ì flexibleÇÑ single cell ATAC-seq library(±×¸² 2)¸¦ »ý¼ºÇÏ°í sequencingÇÏ¿´´Ù.
±×¸² 2. Experimental design for using ATAC-seq to identify epigenomic states of multiple cell types from human donors.
Àü»ç ½ÃÀÛ ºÎÀ§ ³» ¿°»öÁú Á¢±Ù¼º ºÐ¼® °á°ú ¼¼ °¡Áö ÁÖ¿ä ±ºÁýÀÎ B¼¼Æ÷, T¼¼Æ÷ ¹× monocytes (±×¸² 3)·ÎÀÇ ¸Å¿ì °ß°íÇÑ ±×·ìÈ°¡ ³ªÅ¸³µ½À´Ï´Ù. PBMC subpopulationÀº
¿©·¯ ºÐ¸®µÈ ¼¼Æ÷ À¯Çü(±×¸² 3, Panel A)°ú ÀÏÄ¡ÇÏ´Â ¼¼Æ÷ À¯Çüº° ¿°»öÁú Á¢±Ù¼º ÆÐÅÏÀ» ³ªÅ¸³Â½À´Ï´Ù. PU.1 DNA binding motifÀÇ °á°ú´Â ƯÈ÷ monocytes ¹× B cell¿¡¼ÀÇ
ƯÀ̼ºÀ» Áõ°¡½ÃÅ°´Â ÀÌÀü¿¡ ¹ßÇ¥µÈ ¹®Çå°ú ÀÏÄ¡ÇÏ¿´À¸³ª(±×¸² 3, Panel B), ¹Ý¸é¿¡ C/EBP¥á ¹× RUNX1 motif´Â monocytes ¹× T cell¿¡¼¸¸ º¸´Ù Á¢±ÙÇϱ⠽¬¿ü´Ù (±×¸² 3, Panel C, D).
±×¸² 3. t-SNE plots of chromatin accessibility reveal robust clustering of chromatin accessibility patterns within specific hematopoietic cell types.
¸ðµç ¼¼Æ÷ (Panel A), PU.1 (Panel B), C/EBP¥á (Panel C) ¹× RUNX1 (Panel D)¿¡ ´ëÇÑ chromatin Á¢±Ù¼º ÇÁ·ÎÆÄÀÏÀº human blood¿¡¼ À¯µµµÈ ÁÖ¿ä ¼¼Æ÷ À¯ÇüÀÇ °³º° Ŭ·¯½ºÅ͸µÀ» ³ªÅ¸³À´Ï´Ù.
Conclusion
TBUSA¿Í ÇÔ²² Greenleaf ¿¬±¸½Ç¿¡¼ °³¹ßÇÑ ÀÌ ÇÁ·ÎÅäÄÝÀ» ÀÌ¿ëÇϸé single cell ATAC-seq¿ë library¸¦ ½Å¼ÓÇÏ°Ô Á¦ÀÛÇÒ ¼ö ÀÖ½À´Ï´Ù. SMARTer ICELL8 single cell systemÀº
ÀÌ·¯ÇÑ workflow¸¦ °£¼ÒÈÇÒ ¼ö ÀÖµµ·Ï automated cell isolation/imagingÀ» Á¦°øÇϸç 4-5½Ã°£ÀÇ °£ÆíÇÏ°í ½Å¼ÓÇÑ on-chip workflow°¡ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.
ÀÌ·¯ÇÑ ¹æ¹ýÀº chip´ç 1,500°³ ÀÌ»óÀÇ single cellsÀ», cell´ç Æò±Õ 14,000°³ ÀÌ»óÀÇ fragment¸¦ single cell ºÐ¼®ÀÌ °¡´ÉÇÏ¿©, ÀÌÀü¿¡ ¼³¸íÇÑ ¿°»öÁú Á¢±Ù¼º ÇÁ·ÎÆÄÀÏÀ»
¹Ýº¹ÇÏ´Â °Í°ú ¾ÆÁÖ º¹ÀâÇÑ »ùÇÃ(¿¹ : Human blood)¿¡¼µµ ƯÀÌÀûÀÎ cell typeÀ» È®ÀÎÇÏ´Â °ÍÀÌ °¡´ÉÇÕ´Ï´Ù.
Method
»ó±â µ¥ÀÌÅÍÀÇ µµÃâ¿¡ »ç¿ëµÈ full method´Â Mezger et al., 2018¿¡¼ ¾òÀ» ¼ö ÀÖÁö¸¸ SMARTer ICELL8 single cell system¿¡¼ single cell ATAC-seq¿¡ ´ëÇÑ »ç¿ë°¡´ÉÇÑ ÇÁ·ÎÅäÄÝÀº
TBUSA¿¡¼ Á÷Á¢ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.
References
Mezger, A. et al. High-throughput chromatin accessibility profiling at single-cell resolution. Nat. Commun. 9, 3647 (2018).