´Ý±â
TaKaRa
Á¦Ç°¸í/Á¦Ç°ÄÚµå
Å°¿öµå°Ë»ö
°Ë»ö
´Ý±â
  • °í°´Áö¿ø 
  • ¾÷¹«¾È³»¦¢Á¦Ç°¹®ÀÇ
  • ÀüÈ­¹øÈ£¦¢02-2081-2510
  • Email     ¦¢support@takara.co.kr
  • ´ëÀüÁö»ç 
  • ¾÷¹«¾È³»¦¢´ëÀü/ÃæûÁö¿ª ÁÖ¹®, Á¦Ç°¹®ÀÇ
  • ÀüÈ­¹øÈ£¦¢042-828-6525
  • Email     ¦¢tkbd@takara.co.kr
  • ¾÷¹«½Ã°£¾È³»
  • [ Æò¡¡¡¡ÀÏ ] 09 : 00 ~ 18 : 00 ¦¢ [ Á¡½É½Ã°£ ] 12 : 00 ~ 13 : 00
  • Å䡤ÀÏ¿äÀÏ, °øÈÞÀÏÀº ÈÞ¹«ÀÔ´Ï´Ù.
Home > ÀüÁ¦Ç°º¸±â > NGS °ü·Ã > DNA-seq °³¿ä > [Cancer Research] Cancer Genomics & Epigenomics

[Cancer Research] Cancer Genomics & Epigenomics

-



Cancer genomics and epigenomics

MutationÀ̳ª copy number variation, ±¸Á¶Àû º¯ÀÌ µî°ú °°Àº °Ô³ð º¯ÀÌ, Èļº À¯ÀüÇÐÀû ȯ°æÀ¸·Î À¯¹ßµÇ´Â Á¶Àý Àå¾Ö (i.e., DNA methylation status) µîÀº ¾Ï¿¡¼­ º¸ÀÌ´Â ÀüÇüÀûÀΠƯ¡À¸·Î ¾Ë·ÁÁ® ÀÖ´Ù. ¾Ï ¿¬±¸ÀÚµéÀº Whole genome sequencing (WGS)¿Í targeted sequencing¸¦ ÅëÇØ ÁַΠü¼¼Æ÷ º¯À̳ª CNV¸¦ °ËÃâÇÔÀ¸·Î½á, °Ô³ð º¯À̸¦ Æ÷°ýÀûÀ¸·Î ÀÌÇØÇÒ ¼ö ÀÖ°Ô µÇ¾ú´Ù. ExomeÀ̳ª panel sequencing°ú °°ÀÌ Æ¯Á¤ À¯ÀüÀÚ³ª ƯÁ¤ ºÎÀ§¸¦ Ç¥Àû ºÐ¼®ÇÔÀ¸·Î½á, WGS¿¡¼­ È®ÀÎÇÑ º¯ÀÌÀÇ °ËÃ⠹ਵµ º¸´Ù ´õ ³ôÀº depth·Î ºÐ¼®ÇÒ ¼ö ÀÖ´Ù. ¹Ý¸é¿¡ Èļº À¯ÀüÇÐÀûÀ¸·Î Á¢±ÙÇϸé, ¾Ï ƯÀÌÀû DNA¿Í °áÇÕÇÏ´Â ´Ü¹éÁúÀ̳ª È÷½ºÅæ º¯Çü, ¾Ï¼¼Æ÷ ³»ÀÇ DNA methylationÀ» È¿°úÀûÀ¸·Î ±Ô¸íÇس¾ ¼ö ÀÖ´Ù. À¯ÀüÀû º¯À̸¦ µ¿¹ÝÇÏ´Â ÀÌ·¯ÇÑ Èļº À¯ÀüÇÐÀû º¯È­°¡ Á¾¾ç »ý¼º°ú ÁøÇà, Ä¡·á ³»¼º µî¿¡ ¾î¶»°Ô °ü¿©ÇÏ´ÂÁö ÀÌÇØÇÏ´Â °ÍÀº Á¾¾ç Ä¡·á¹ýÀÇ ¹ßÀüÀ» À§ÇØ ¸Å¿ì Áß¿äÇÏ´Ù.

Highlighted products
´ÙÄ«¶ó¹ÙÀÌ¿À´Â ü¼¼Æ÷ º¯ÀÌ¿Í CNV °ËÃâÀ» À§ÇÑ WGS¿Í targeted sequencing °úÁ¤À» º¸´Ù ºü¸£°Ô ÁøÇàÇÒ ¼ö ÀÖµµ·Ï ThruPLEX¢ç¸¦ Æ÷ÇÔÇÑ ´Ù¾çÇÑ Çõ½Å ±â¼úÀ» Á¦°øÇÏ°í ÀÖ´Ù. ´ÙÄ«¶ó¹ÙÀÌ¿ÀÀÇ ThruPLEX¢ç Á¦Ç°Àº »ç¿ë ½Ã¿¡ ¹ß»ýÇÒ ¼ö ÀÖ´Â error³ª »ùÇà ¼Õ½Ç, ¿À¿° ¹°Áú È¥ÀÔÀ» ¹æÁöÇϱâ À§ÇØ single tube ³» 3-step °úÁ¤À¸·Î 2½Ã°£ ³» ¿Ï·áÇÒ ¼ö ÀÖ´Ù (±×¸² 1).
ThruPLEX¢ç DNA-Seq Kit¸¦ ÀÌ¿ëÇϸé FFPE »ùÇÃÀ̳ª ChIP DNA¸¦ Æ÷ÇÔÇÑ picogram ¼öÁØÀÇ DNA·ÎºÎÅÍ NGS ¶óÀ̺귯¸®¸¦ ±¸ÃàÇÒ ¼ö ÀÖ´Ù. ThruPLEX¢ç Tag-seq KitÀº ÁõÆø Àü DNA Á¶°¢ °¢°¢À» tagging ÇÏ´Â 1,600¸¸°³ÀÇ unique sequence¸¦ Æ÷ÇÔÇÏ°í ÀÖ¾î, ¶óÀ̺귯¸®ÀÇ Áغñ³ª target enrichment, µ¥ÀÌÅÍ ºÐ¼® °úÁ¤¿¡¼­ Àúºóµµ ´ë¸³À¯ÀüÀÚ¸¦ °ËÃâÇϰųª °¢°¢ÀÇ ´ÜÆíÀ» È®ÀÎÇÏ´Â µ¥ È¿°úÀûÀÌ´Ù.
ThruPLEX¢ç ±â¼úÀº Agilent SureSelect, Roche Nimblegen SeqCap EZ³ª IDT xGen Lockdown probes¿Í °°Àº target enrichment Ç÷§Æû¿¡µµ Àû¿ëÇÏ¿© »ç¿ëÇÒ ¼ö ÀÖ´Ù. ¶ÇÇÑ, ´Ù¾çÇÑ Á¾·ùÀÇ ¾Ï¿¡ ´ëÇÑ WGS, targeted sequencing, CNV ºÐ¼® ¹× ChIP-seq ¿¬±¸¿¡¼­ ¼º°øÀûÀ¸·Î È°¿ëµÇ°í ÀÖÀ½À» ´Ù¾çÇÑ Âü°í ¹®Çå¿¡¼­ È®ÀÎÇÒ ¼ö ÀÖ´Ù.


±×¸² 1. ThruPLEX¢ç ±â¼úÀ» ÀÌ¿ëÇÑ ½ÇÇè °úÁ¤

Code

Á¦Ç°¸í

¿ë·®

R400674

ThruPLEX¢ç DNA-Seq Kit

24ȸ

R400741

ThruPLEX¢ç DNA-Seq HV

24ȸ

R400584

ThruPLEX¢ç Tag-seq 6S (12) Kit

24ȸ

R400742

ThruPLEX¢ç Tag-Seq HV

24ȸ



[¿ø¹®] Cancer genomics and epigenomics
[Âü°í¹®Çå] References and publications citing the use of SMARTer ThruPLEX technology for whole genome sequencing, targeted sequencing, CNV analysis, and ChIP-seq studies in various types of cancer include the following:
- Cato, L. et al. Development of Bag-1L as a therapeutic target in androgen receptor-dependent prostate cancer. eLife 6, e27159 (2017).
- Jeselsohn, R. et al. Allele-specific chromatin recruitment and therapeutic vulnerabilities of ESR1 activating mutations. Cancer Cell 33, 173-186 (2018).
- Jin, X. et al. Targeting glioma stem cells through combined BMI1 and EZH2 inhibition. Nature Med. 23, 1352-1361 (2017).
- Klevebring, D. et al. Evaluation of exome sequencing to estimate tumor burden in plasma. PLoS One 18, e104417 (2014).
- Markus, H. et al. Evaluation of pre-analytical factors affecting plasma DNA analysis. Sci. Rep. 8, 7375 (2018).
- McNair, C. et al. Differential impact of RB status on E2F1 reprogramming in human cancer. J. Clin. Invest. 128, 341-358 (2018).
- Murtaza, M. et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497, 108-112 (2013).
- Patel, K. M. et al. Association of plasma and urinary mutant DNA with clinical outcomes in muscle-invasive bladder cancer. Sci. Rep. 7, 5554 (2017).
- Wang, X. et al. Purine synthesis promotes maintenance of brain tumor-initiating cells in glioma. Nature Neurosci. 20, 661-673 (2017).
- Weiss, G. J. et al. Tumor cell-free DNA copy number instability predicts therapeutic response to immunotherapy. Clin. Cancer Res. 23, 5074-5081 (2017).