Cancer genomics and epigenomics
MutationÀ̳ª copy number variation, ±¸Á¶Àû º¯ÀÌ µî°ú °°Àº °Ô³ð º¯ÀÌ, Èļº À¯ÀüÇÐÀû ȯ°æÀ¸·Î À¯¹ßµÇ´Â Á¶Àý Àå¾Ö (i.e., DNA methylation status) µîÀº ¾Ï¿¡¼ º¸ÀÌ´Â ÀüÇüÀûÀΠƯ¡À¸·Î ¾Ë·ÁÁ® ÀÖ´Ù. ¾Ï ¿¬±¸ÀÚµéÀº Whole genome sequencing (WGS)¿Í
targeted sequencing¸¦ ÅëÇØ ÁַΠü¼¼Æ÷ º¯À̳ª CNV¸¦ °ËÃâÇÔÀ¸·Î½á, °Ô³ð º¯À̸¦ Æ÷°ýÀûÀ¸·Î ÀÌÇØÇÒ ¼ö ÀÖ°Ô µÇ¾ú´Ù. ExomeÀ̳ª panel sequencing°ú °°ÀÌ Æ¯Á¤ À¯ÀüÀÚ³ª ƯÁ¤ ºÎÀ§¸¦ Ç¥Àû ºÐ¼®ÇÔÀ¸·Î½á, WGS¿¡¼ È®ÀÎÇÑ º¯ÀÌÀÇ °ËÃ⠹ਵµ º¸´Ù
´õ ³ôÀº depth·Î ºÐ¼®ÇÒ ¼ö ÀÖ´Ù. ¹Ý¸é¿¡ Èļº À¯ÀüÇÐÀûÀ¸·Î Á¢±ÙÇϸé, ¾Ï ƯÀÌÀû DNA¿Í °áÇÕÇÏ´Â ´Ü¹éÁúÀ̳ª È÷½ºÅæ º¯Çü, ¾Ï¼¼Æ÷ ³»ÀÇ DNA methylationÀ» È¿°úÀûÀ¸·Î ±Ô¸íÇس¾ ¼ö ÀÖ´Ù. À¯ÀüÀû º¯À̸¦ µ¿¹ÝÇÏ´Â ÀÌ·¯ÇÑ Èļº À¯ÀüÇÐÀû º¯È°¡ Á¾¾ç »ý¼º°ú ÁøÇà,
Ä¡·á ³»¼º µî¿¡ ¾î¶»°Ô °ü¿©ÇÏ´ÂÁö ÀÌÇØÇÏ´Â °ÍÀº Á¾¾ç Ä¡·á¹ýÀÇ ¹ßÀüÀ» À§ÇØ ¸Å¿ì Áß¿äÇÏ´Ù.
Highlighted products
´ÙÄ«¶ó¹ÙÀÌ¿À´Â ü¼¼Æ÷ º¯ÀÌ¿Í CNV °ËÃâÀ» À§ÇÑ WGS¿Í targeted sequencing °úÁ¤À» º¸´Ù ºü¸£°Ô ÁøÇàÇÒ ¼ö ÀÖµµ·Ï ThruPLEX
¢ç¸¦ Æ÷ÇÔÇÑ ´Ù¾çÇÑ Çõ½Å ±â¼úÀ» Á¦°øÇÏ°í ÀÖ´Ù. ´ÙÄ«¶ó¹ÙÀÌ¿ÀÀÇ ThruPLEX
¢ç Á¦Ç°Àº »ç¿ë ½Ã¿¡ ¹ß»ýÇÒ ¼ö ÀÖ´Â error³ª »ùÇà ¼Õ½Ç, ¿À¿° ¹°Áú È¥ÀÔÀ» ¹æÁöÇϱâ À§ÇØ single tube ³» 3-step °úÁ¤À¸·Î 2½Ã°£ ³» ¿Ï·áÇÒ ¼ö ÀÖ´Ù (±×¸² 1).
ThruPLEX¢ç DNA-Seq Kit¸¦ ÀÌ¿ëÇϸé FFPE »ùÇÃÀ̳ª ChIP DNA¸¦ Æ÷ÇÔÇÑ picogram ¼öÁØÀÇ DNA·ÎºÎÅÍ NGS ¶óÀ̺귯¸®¸¦ ±¸ÃàÇÒ ¼ö ÀÖ´Ù.
ThruPLEX¢ç Tag-seq KitÀº ÁõÆø Àü DNA Á¶°¢ °¢°¢À» tagging ÇÏ´Â 1,600¸¸°³ÀÇ unique sequence¸¦ Æ÷ÇÔÇÏ°í ÀÖ¾î, ¶óÀ̺귯¸®ÀÇ Áغñ³ª target enrichment, µ¥ÀÌÅÍ ºÐ¼® °úÁ¤¿¡¼ Àúºóµµ ´ë¸³À¯ÀüÀÚ¸¦ °ËÃâÇϰųª °¢°¢ÀÇ ´ÜÆíÀ» È®ÀÎÇÏ´Â µ¥ È¿°úÀûÀÌ´Ù.
ThruPLEX
¢ç ±â¼úÀº Agilent SureSelect, Roche Nimblegen SeqCap EZ³ª IDT xGen Lockdown probes¿Í °°Àº target enrichment Ç÷§Æû¿¡µµ Àû¿ëÇÏ¿© »ç¿ëÇÒ ¼ö ÀÖ´Ù. ¶ÇÇÑ, ´Ù¾çÇÑ Á¾·ùÀÇ ¾Ï¿¡ ´ëÇÑ WGS, targeted sequencing, CNV ºÐ¼® ¹× ChIP-seq ¿¬±¸¿¡¼ ¼º°øÀûÀ¸·Î È°¿ëµÇ°í ÀÖÀ½À» ´Ù¾çÇÑ Âü°í ¹®Çå¿¡¼ È®ÀÎÇÒ ¼ö ÀÖ´Ù.
±×¸² 1. ThruPLEX¢ç ±â¼úÀ» ÀÌ¿ëÇÑ ½ÇÇè °úÁ¤
[¿ø¹®] Cancer genomics and epigenomics
[Âü°í¹®Çå] References and publications citing the use of SMARTer ThruPLEX technology for whole genome sequencing, targeted sequencing, CNV analysis, and ChIP-seq studies in various types of cancer include the following:
- Cato, L.
et al. Development of Bag-1L as a therapeutic target in androgen receptor-dependent prostate cancer.
eLife 6, e27159 (2017).
- Jeselsohn, R.
et al. Allele-specific chromatin recruitment and therapeutic vulnerabilities of ESR1 activating mutations.
Cancer Cell 33, 173-186 (2018).
- Jin, X.
et al. Targeting glioma stem cells through combined BMI1 and EZH2 inhibition.
Nature Med. 23, 1352-1361 (2017).
- Klevebring, D.
et al. Evaluation of exome sequencing to estimate tumor burden in plasma.
PLoS One 18, e104417 (2014).
- Markus, H.
et al. Evaluation of pre-analytical factors affecting plasma DNA analysis.
Sci. Rep. 8, 7375 (2018).
- McNair, C.
et al. Differential impact of RB status on E2F1 reprogramming in human cancer.
J. Clin. Invest. 128, 341-358 (2018).
- Murtaza, M.
et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA.
Nature 497, 108-112 (2013).
- Patel, K. M.
et al. Association of plasma and urinary mutant DNA with clinical outcomes in muscle-invasive bladder cancer.
Sci. Rep. 7, 5554 (2017).
- Wang, X.
et al. Purine synthesis promotes maintenance of brain tumor-initiating cells in glioma.
Nature Neurosci. 20, 661-673 (2017).
- Weiss, G. J.
et al. Tumor cell-free DNA copy number instability predicts therapeutic response to immunotherapy.
Clin. Cancer Res. 23, 5074-5081 (2017).