HLA typing in cancer
Human Leukocyte Antigen (HLA)Àº ³ôÀº ´ÙÇü¼ºÀ» °¡Áö¸ç, ¸é¿ª Á¶Àý¿¡ °ü¿©ÇÏ´Â À¯ÀüÀÚ´Ù. ÀÌ·± HLA typingÀº ¾ÏÀÇ ¹ßº´À̳ª Àç¹ß¿¡ °ü¿©ÇÏ´Â µ¹¿¬º¯ÀÌ µîÀ» È®ÀÎÇÒ ¼ö ÀÖ¾î ¸Å¿ì Áß¿äÇÏ´Ù. ÁÖ·Î, ¹éÇ÷º´ (leukemia), ¸²ÇÁÁ¾ (lymphoma), ´Ù¹ß¼º °ñ¼öÁ¾ (multiple myeloma), ½Å°æ ¸ð¼¼Æ÷Á¾ (neuroblastoma)°ú °°Àº ¾ÏÀÇ Ä¡·á¸¦ À§ÇØ Àå±â³ª µ¿Á¾ÀÇ Áٱ⼼Æ÷¸¦ À̽ÄÇϱâ Àü¿¡ ±âÁõÀÚ¿Í È¯ÀÚ °£ÀÇ ÀûÇÕ¼º ¿©ºÎ¸¦ È®ÀÎÇÒ ¶§ »ç¿ëÇÑ´Ù.
NGS (Next-Generation Sequencing)´Â HLA typingÀ» À§ÇÑ °¡Àå ÃÖ½ÅÀÇ ±â¼ú·Î¼, LD PCR°ú °°ÀÌ ±âÁ¸¿¡ »ç¿ëµÇ´ø ±â¼ú¿¡ ºñÇØ ³·Àº ºñ¿ëÀ¸·Î ´õ Á¤È®ÇÑ °á°ú¸¦ Á¦°øÇÑ´Ù (Hosomichi
et al. 2015). NGS¸¦ ÀÌ¿ëÇÑ HLA typingÀº º¹ÀâÇÏ°í ±¤¹üÀ§ÇÑ DNA¸¦ ºÐ¼®ÇϹǷΠ³ôÀº ƯÀ̼º°ú Á¤È®¼ºÀ» ÇÊ¿ä·Î ÇÑ´Ù. ´ÙÄ«¶ó¹ÙÀÌ¿À´Â HLA typingÀ» ¼öÇàÇÒ ¼ö ÀÖ´Â ³ôÀº Ç°Áú°ú ¼º´ÉÀÇ NGS library prep. Kit¿Í targeted sequencingÀ» À§ÇÑ high-fidelity polymerase¸¦ Á¦°øÇÏ°í ÀÖ´Ù.
Highlighted products
´ÙÄ«¶ó¹ÙÀÌ¿ÀÀÇ
PrimeSTAR¢ç GXL°ú
Takara LA Taq¢ç DNA polymerase´Â ³ôÀº Á¤È®µµ¿Í ±ä ±æÀÌÀÇ DNA ÁõÆø, GC-rich »ùÇÃÀÇ Àû¿ë¼ºÀ¸·Î HLA typingÀ» À§ÇÑ target sequencing¿¡ ÀÌ»óÀûÀÎ È¿¼Ò·Î ¿©°ÜÁ® ¿ÔÀ¸¸ç, ¸¹Àº ¹®Çå¿¡¼ À̸¦ ÀÔÁõÇÏ°í ÀÖ´Ù (Liu
et al. 2018; Xu, Wang ¹× Hong 2017; Yin
et al. 2016; Mayor
et al. 201; Lan
et al. 2015; Ozaki
et al. 2013; Ozaki
et al. 2015).
»Ó¸¸ ¾Æ´Ï¶ó,
PicoPLEX¢ç Single Cell WGA Kit v3¿Í
PicoPLEX¢ç Gold Single Cell DNA-seq kit´Â °£¼ÒÈµÈ ½ÇÇè °úÁ¤À¸·Î single cell ¼öÁØÀÇ WGA (whole genome amplification)À» °¡´ÉÄÉ ÇÏ¿©, NGS, Sanger, array µîÀ» ÀÌ¿ëÇÑ HLA typing¿¡ Àû¿ëÇÒ ¼ö ÀÖ´Ù. (
±×¸² 1).
±×¸² 1. PicoPLEX¢ç ±â¼úÀ» ÀÌ¿ëÇÑ single cell DNA-seq °úÁ¤
(Panel A) Schematic depicting the simple, four-step PicoPLEX
¢ç Gold workflow with minimum hands-on time.
(
Panel B) Schematic illustrating the PicoPLEX Gold chemistry. Cellular gDNA extracted in Step 1 is used as the template for multiple cycles of quasi-random priming and linear amplification followed by exponential library amplification.
[¿ø¹®] HLA typing in cancer
[Âü°í¹®Çå] References and product citations
- Hosomichi, K.
et al. J. Hum. Genet. 60, 665-673 (2015).
- Lan, J. H.
et al. Impact of three Illumina library construction methods on GC bias and HLA genotype calling.
Hum. Immunol. 76, 166-175 (2015).
- Liu, C.
et al. Accurate typing of human leukocyte antigen class I genes by oxford nanopore sequencing.
J. Mol. Diagn. 2, 006 (2018).
- Mayor, N. P.
et al. HLA typing for the next generation.
PLOS ONE 10, e0127153 (2015).
- Murphy, N. M.
et al. Haplotyping the human leukocyte antigen system from single chromosomes.
Sci. Rep. 6, 30381 (2016).
- Png, E.
et al. A genome-wide association study of hepatitis B vaccine response in an Indonesian population reveals multiple independent risk variants in the HLA region.
Hum. Mol. Genet. 20, 3893-3898 (2011).
- Ozaki, Y.
et al. HLA-DRB1, -DRB3, -DRB4 and -DRB5 genotyping at a super-high resolution level by long-range PCR and high-throughput sequencing.
Tissue Antigens 83, 10-16 (2013).
- Ozaki, Y.
et al. Cost-efficient multiplex PCR for routine genotyping of up to nine classical HLA loci in a single analytical run of multiple samples by next-generation sequencing.
BMC Genomics 16, 318 (2015).
- Xu, Y.-P., Wang, S.-X. & Hong, W.-X. A novel HLA-E allele,
HLA-E*01:01:01:06 , identified in a Chinese Leukemia patient.
HLA 89, 260-262 (2017).
- Yin, Y.
et al. Application of high-throughput next-generation sequencing for HLA typing on buccal extracted DNA: results from over 10,000 donor recruitment samples.
PLoS One 11, e0165810 (2016).