´Ý±â
TaKaRa
Á¦Ç°¸í/Á¦Ç°ÄÚµå
Å°¿öµå°Ë»ö
°Ë»ö
´Ý±â
  • °í°´Áö¿ø 
  • ¾÷¹«¾È³»¦¢Á¦Ç°¹®ÀÇ
  • ÀüÈ­¹øÈ£¦¢02-2081-2510
  • Email     ¦¢support@takara.co.kr
  • ´ëÀüÁö»ç 
  • ¾÷¹«¾È³»¦¢´ëÀü/ÃæûÁö¿ª ÁÖ¹®, Á¦Ç°¹®ÀÇ
  • ÀüÈ­¹øÈ£¦¢042-828-6525
  • Email     ¦¢tkbd@takara.co.kr
  • ¾÷¹«½Ã°£¾È³»
  • [ Æò¡¡¡¡ÀÏ ] 09 : 00 ~ 18 : 00 ¦¢ [ Á¡½É½Ã°£ ] 12 : 00 ~ 13 : 00
  • Å䡤ÀÏ¿äÀÏ, °øÈÞÀÏÀº ÈÞ¹«ÀÔ´Ï´Ù.
Home > ÀüÁ¦Ç°º¸±â > NGS °ü·Ã > ChIP-Seq / Meth-Seq > [Àû¿ë] ThruPLEX¸¦ ÀÌ¿ëÇÑ ChIP-seq

[Àû¿ë] ThruPLEX¸¦ ÀÌ¿ëÇÑ ChIP-seq

-



Low cell number ChIP-seq using the ThruPLEX DNA-Seq Kit as a tool for epigenetic profiling

Data kindly provided by: Yanina Bogliotti and Pablo Ross at University of California, Davis, California, United States

¡ß Introduction
Polymerase, transcription factor, chromatin modifier¿Í °°ÀÌ DNA¿Í °áÇÕÇÏ´Â ´Ü¹éÁúÀº DNAÀÇ º¹Á¦ºÎÅÍ À¯ÀüÀÚÀÇ ¹ßÇöÀ̳ª ¿°»öÁú ±¸Á¶¸¦ Á¶ÀýÇϱâ À§ÇØ DNA¸¦ ¼öÁ¤ÇÏ´Â °úÁ¤±îÁö ¼¼Æ÷ÀÇ ´Ù¾çÇÑ Çʼö ¼¼Æ÷ ±âÀü¿¡ Áß¿äÇÏ°Ô ÀÛ¿ëÇÑ´Ù. DNA¿Í °áÇÕÇÏ´Â ´Ü¹éÁúÀº º¹Á¦ °³½ÃÁ¡À̳ª ÇÁ·Î¸ðÅÍ¿Í °°Àº ƯÁ¤ genomic loci¿¡ °áÇÕÇϰųª, single stranded DNA¿¡ °áÇÕÇÏ´Â ´Ü¹éÁú, helicase, polymerase¿Í °°ÀÌ ´Ù¾çÇÑ ¼­¿­¿¡ µû¶ó DNA¿¡ °áÇÕÇÒ ¼öµµ ÀÖ´Ù (Farnham 2009; Johnson et al. 2007 ; Martin°ú Zhang 2005). ¸¹Àº ¿¬±¸ÀÚµéÀº histone°ú nucleosomeÀÇ À§Ä¡¿Í º¯ÇüÀÌ À¯ÀüÀÚ Á¶Àý¿¡ ¾î¶² ¿ªÇÒÀ» ¼öÇàÇÏ´ÂÁö¿¡ ´ëÇÑ °ü½ÉÀÌ ¸Å¿ì ³ô´Ù (Barski et al. 2007). ´ëÇ¥ÀûÀ¸·Î, Lysine 4¿¡ À§Ä¡ÇÑ histone 3ÀÇ tri-methylationÀº °áÇÕÇÏ°í ÀÖ´Â lociÀÇ Àü»ç¸¦ ÃËÁøÇÏ´Â °ÍÀ¸·Î ¾Ë·ÁÁø ¹Ý¸é, lysine 27¿¡ À§Ä¡ÇÑ histone 3ÀÇ tri-methylationÀº Àü»ç¸¦ °¨¼Ò½ÃÅ°´Â °ÍÀ¸·Î È®ÀεǾú´Ù (Martin and Zhang 2005). Å©·Î¸¶Æ¾¸é¿ªÄ§°­¹ý (Chromatin immuno precipitation; ChIP)Àº DNA¿Í °áÇÕÇÏ´Â ´Ü¹éÁú°ú À̵éÀÌ Å¸°ÙÀ¸·Î ÇÏ´Â °Ô³ð°£ÀÇ »óÈ£ ÀÛ¿ëÀ» ¿¬±¸Çϱâ À§ÇØ »ç¿ëµÇ´Â ¾ÆÁÖ È¿°úÀûÀÎ ¹æ½ÄÀÌ´Ù. NGS ±â¼úÀÌ Á¡Â÷ ¹ßÀüÇÔ¿¡ µû¶ó, °úÇÐÀÚµéÀº high-throughput DNA-seq°ú ChIP-seqÀ» °áÇÕÇÏ¿©, °Ô³ð Àüü¿¡¼­ DNA¿Í °áÇÕÇÏ´Â ´Ü¹éÁúÀÇ Ç¥Àû ¿°±â ¼­¿­À» º¸´Ù ½±°Ô È®ÀÎÇÒ ¼ö ÀÖ°Ô µÇ¾ú´Ù.
   ChIP-seq ½ÇÇèÀÇ ÀϹÝÀûÀÎ °úÁ¤Àº ¾Æ·¡¿Í °°´Ù (±×¸² 1).
   1) Formaldehyde¿Í °°Àº reversible cross-linker¸¦ ó¸®ÇØ ´Ü¹éÁúÀÌ DNA¿¡ °áÇÕÇϵµ·Ï ÇÑ´Ù.
   2) SonicationÀ̳ª È¿¼Ò 󸮸¦ ÅëÇØ DNA¸¦ Àý´ÜÇÑ´Ù.
   3) Magnetic beads¿¡ ºÎÂøµÇ¾î Àִ ƯÀÌ Ç×ü¸¦ ÀÌ¿ëÇØ protein-DNA complex¸¦ ħÀü ½ÃŲ´Ù.
   4) ´Ü¹éÁú·ÎºÎÅÍ °áÇÕµÈ DNA¸¦ ¶¼¾î³»°í, ÀÌ DNA·Î library¸¦ Á¦ÀÛÇÑ´Ù.
   5) High-throughput ½ÃÄö½ÌÀ» ÁøÇàÇÑ´Ù.
ChIP ½ÇÇè¿¡¼­ ȸ¼öµÇ´Â DNA´Â ´ÜÀÏ ´Ü¹éÁú ȤÀº ´ÜÀÏ º¹ÇÕü¿¡ ÀÇÇØ °áÇÕµÈ ¿µ¿ª¸¸À» Æ÷ÇÔÇϱ⿡ ¾çÀÌ ¸Å¿ì Àû´Ù. ´õ¿í, ¼¼Æ÷ ¼ö°¡ Á¦ÇÑµÈ »óÅ¿¡¼­ ¾òÀº ChIP DNA´Â ´õ DNA ¾çÀÌ ÀûÀ» ¼ö ÀÖ¾î ºÐ¼®¿¡ ¸Å¿ì ¾î·Á¿òÀÌ ÀÖ¾ú´Ù. ÀÌ·¯ÇÑ °æ¿ì´Â 50 pg ¼öÁØÀÇ »ùÇà ¾ç¿¡µµ Àû¿ë °¡´ÉÇÑ ThruPLEX ±â¼úÀ» Àû¿ëÇÏ¸é ºÐ¼®À» ¿ëÀÌÇÏ°Ô ÁøÇàÇÒ ¼ö ÀÖ´Ù.



±×¸² 1. ÀûÀº ¼öÀÇ ¼¼Æ÷¸¦ ÀÌ¿ëÇÑ ChIP-seqÀÇ ½ÇÇè °úÁ¤
This is a general workflow for low cell number ChIP-seq. Approximately 20,000 fibroblasts and 20,000 morula cells were each subjected to formaldehyde crosslinking, quenching by glycine addition, and chromatin shearing by sonication. Following shearing, chromatin from fibroblasts or morula cells was divided into subpopulations for both immunoprecipitations, or 10% input controls, followed by decrosslinking, DNA purification, library preparation with ThruPLEX DNA-Seq, and sequencing.

¡ß Results
ƯÈ÷ ÀûÀº ¼¼Æ÷·ÎºÎÅÍ ¾òÀº ChIP DNAÀÇ ¾çÀº ¸Å¿ì Àû±â ¶§¹®¿¡, ´ë·® ºÐ¼®À» À§ÇÑ library¸¦ Á¦ÀÛÇÏ´Â °ÍÀº ¸Å¿ì ¾î·Æ´Ù. ÀÌ·¯ÇÑ ¾î·Á¿ò¿¡µµ ºÒ±¸ÇÏ°í, ChIP-seqÀº ƯÁ¤ ºÎÀ§¿¡¼­ ÀÛ¿ëÇÏ´Â ´Ü¹éÁú°ú DNAÀÇ »óÈ£ ÀÛ¿ë°ú Àü»ç Á¶ÀýÀ» È®ÀÎÇϱâ À§ÇØ °¡Àå ¸¹ÀÌ »ç¿ëµÇ´Â ±â¹ýÀÌ µÇ¾ú´Ù (Park 2009). ¾Æ·¡¿¡¼­´Â ChIP-seqÀ» À§ÇØ morula embryo À¯·¡ÀÇ bovine fibroblast cell°ú blastomere ¼¼Æ÷ ÃÖ´ë 10,000°³·ÎºÎÅÍ H3K4me3 ȤÀº K3K27me3 Ç×ü¸¦ ÀÌ¿ëÇØ ChIP DNA¸¦ ¾ò°í, ThruPLEX DNA-Seq Kit¸¦ ÀÌ¿ëÇØ ¶óÀ̺귯¸®¸¦ Á¦ÀÛÇÏ¿´´Ù. ÀÌ·¸°Ô Á¦ÀÛµÈ ThruPLEX ¶óÀ̺귯¸®´Â Illumina¢ç TruSeq¢ç¸¦ ÅëÇØ Á¦ÀÛµÈ ¶óÀ̺귯¸®¿Í ¸Å¿ì À¯»çÇÏ°Ô ³ªÅ¸³µ´Ù. 10,000°³ ¼¼Æ÷·ÎºÎÅÍ ThruPLEX¢çÀ¸·Î Á¦ÀÛÇÑ ChIP-seq ¶óÀ̺귯¸®ÀÇ reads ¼ö´Â 107°³ÀÇ ¼¼Æ÷·ÎºÎÅÍ Illumina¢ç TruSeq¢ç¸¦ ÅëÇØ Á¦ÀÛÇÏ¿© ¾òÀº °Í°ú À¯»çÇÏ¿´´Ù (±×¸² 2). ChIP-seqÀÇ Ãʱ⠻ùÇ÷Π»ç¿ëµÈ DNA »ùÇÃÀº ÀûÀº ¾çÀÇ ¼¼Æ÷·ÎºÎÅÍ ¾ò¾ú±â¿¡, clonal reads ¼öµµ ³·°Ô »ý¼ºµÇ¾ú´Ù (±×¸² 3).



±×¸² 2. °¢ Á¶°Ç º° sequenced reads ¼ö
Low cell number ChIP-seq samples and inputs were sequenced to similar depths as high cell number ChIP-seq samples (Panel A), and low cell number ChIP-seq libraries had low percentages of PCR duplicates (Panel B). Each ChIP and sequencing experiment was performed as a single technical replicate.

ChIP-seqÀ» À§ÇØ TruSeq¢çÀ» ÀÌ¿ëÇÏ´Â °æ¿ìº¸´Ù ThruPLEX¢ç¸¦ ÀÌ¿ëÇÏ´Â °æ¿ì¿¡ ¾à 1,000¹è ÀûÀº ¼¼Æ÷¸¦ »ùÇ÷Π»ç¿ëÇÒ ¼ö ÀÖÀ¸¸ç, ÃÑ reads Áß 95 - 96%°¡ bovine genome¿¡ alignment µÇ¾î °Ô³ð Àüü¿¡¼­ ÀÌ»óÀûÀÎ peak¸¦ º¸¿´´Ù (±×¸² 3).



±×¸² 3. Bovine genome¿¡ reads¸¦ alignmentÇÑ °á°ú
(Panel A) Percentages of reads aligning to the bovine genome, as calculated using the Bowtie2 package, are shown for high cell number input and ChIP samples, as well as low cell number input and ChIP samples.
(Panel B) The peaks identified genome-wide from input DNA are nearly identical when compared between high cell number library preparation using TruSeq and low cell number library preparation using ThruPLEX DNA-Seq

±Øµµ·Î ÀûÀº ¾çÀÇ »ùÇÃÀ» »ç¿ëÇÑ low cell number ChIPÀÇ °æ¿ì, ÃÑ reads ¼ö¿¡¼­ genome¿¡ alignÇÑ °ÍÀÌ ³·Àº ºñÀ²·Î ³ªÅ¸³µÁö¸¸ (±×¸² 3), peak¸¦ ÅëÇØ È®ÀÎµÈ fibroblastÀÇ À¯ÀüÀÚ ¼ö´Â ¸Å¿ì ºñ½ÁÇÏ°Ô º¸¿´´Ù (±×¸² 4). ¹è¾Æ ¹ß´Þ ´Ü°è¿¡¼­ histoneÀÇ methylation ¼öÁØÀÌ Á¦Çѵȴٴ ¿¹»ó´ë·Î, bovine morulasÀÇ ChIP ½ÇÇè¿¡¼­´Â ´õ ÀûÀº ¼öÀÇ À¯ÀüÀÚ°¡ °ËÃâµÇ¾ú´Ù (Canovas, Cibelli, and Ross 2012). ÀÌ·¯ÇÑ low cell number ChIP-seq ½ÇÇè °á°ú´Â ±×¸² 5¿¡¼­ º¸ÀÌ´Â °Í°ú °°ÀÌ ±âÁ¸ÀÇ ¹®Çå ¹× ÀÌÀü¿¡ ÁøÇàµÈ RNA-seq °á°ú¿Í ¾ÆÁÖ ³ôÀº ¿¬°ü¼ºÀ» º¸¿´À¸¸ç, H3K4me3¿Í °áÇÕÇÏ´Â À¯ÀüÀÚ°¡ ³ô°Ô ¹ßÇöµÇ´Â ¹Ý¸é, H3K27me3¿Í °áÇÕµÈ À¯ÀüÀÚ´Â ¸Å¿ì ³·Àº transcription levelÀ» º¸¿´´Ù (Martin and Zhang 2005).



±×¸² 4. Bovine genome¿¡¼­ º¸ÀÌ´Â ChIP-seq peaks
Above, in black: the number of peaks called to the bovine genome are shown, per ChIP-seq experiment. Above, in red: the percentage of peaks called that specifically overlap genes.



±×¸² 5. ChIP-seq peaks¿Í transcription level °£ÀÇ ¿¬°ü¼º
The percentage of genes with peaks identified in both high and low cell number ChIP-seq and their correlation with transcription level was analyzed. Genes immunoprecipitated with H3K4me3 show high levels of gene expression in prior RNA-seq results. Genes immunoprecipitated with H3K27me3 show reduced transcription.

¡ß Conclusion
¼Ò·®ÀÇ ChIP-DNA¸¦ library·Î Á¦ÀÛÇÏ´Â °ÍÀº ±²ÀåÈ÷ ¾î·ÆÁö¸¸, ThruPLEX¢ç DNA-Seq Kit¸¦ ÀÌ¿ëÇϸé ÀÌ ¾î·Á¿òÀ» ±Øº¹ÇÒ ¼ö ÀÖ´Ù. ThruPLEX ±â¼úÀº ¾à 10,000°³ ÀÌÇÏÀÇ ¸Å¿ì ÀûÀº ¼öÀÇ bovine fibroblast¿Í embryonic cell·ÎºÎÅÍ ¾òÀº ChIP DNA¸¦ ÃæºÐÈ÷ ÁõÆøÇÒ ¼ö ÀÖ´Ù. º» ½ÇÇè µ¥ÀÌÅÍ¿¡¼­ È®ÀÎÇÒ ¼ö ÀÖµíÀÌ, H3K4me3¿Í H3K27me3¿Í °áÇÕÇÏ´Â °¢°¢ÀÇ DNA·ÎºÎÅÍ ChIP-seqÀ» ÁøÇàÇßÀ» ¶§, low cell number ChIP¿¡¼­µµ high cell number ChIP °á°ú¿Í ¸Å¿ì ³ôÀº ¿¬°ü¼ºÀ» È®ÀÎÇßÀ¸¸ç, duplicate reads ¶ÇÇÑ ³·¾Ò´Ù. ThruPLEX¢ç DNA-Seq Kit´Â single tube ³» ÁøÇàµÇ´Â ¸Å¿ì ºü¸£°í °£´ÜÇÑ 3-step ÇÁ·ÎÅäÄÝÀ» ÀÚ¶ûÇϸç, ÀÌ´Â ChIP DNA¸¦ ÁõÆøÇÏ´Â µ¥ ÀÖ¾î ±â¼úÀû ÇѰ踦 ±Øº¹ÇÏ°í ChIP-seq library Á¦ÀÛ °úÁ¤ÀÇ ÇÑ ¹æ¹ýÀ¸·Î½á Áß¿äÇÏ°Ô È°¿ëµÉ ¼ö ÀÖ´Ù.

[ References ]
- Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823-37 (2007).
- Canovas, S., Cibelli, J. B. & Ross, P. J. Jumonji domain-containing protein 3 regulates histone 3 lysine 27 methylation during bovine preimplantation development. Proc. Natl. Acad. Sci. 109, 2400-2405 (2012).
- Cao, Z., Chen, C., He, B., Tan, K. & Lu, C. A microfluidic device for epigenomic profiling using 100 cells. Nat. Methods 12, 959-962 (2015).
- Dahl, J. A. & Collas, P. ¥ìChIP-a rapid micro chromatin immunoprecipitation assay for small cell samples and biopsies. Nucleic Acids Res. 36, e15 (2008).
- Dennis, G. et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4, P3 (2003).
- Farnham, P. J. Insights from genomic profiling of transcription factors. Nat. Rev. Genet. 10, 605-616 (2009).
- Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-Wide Mapping of in Vivo Protein-DNA Interactions. Science 316, 1497-1502 (2007).
- Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357-359 (2012).
- Martin, C. & Zhang, Y. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol. 6, 838-849 (2005).
- Park, P. J. ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet. 10, 669-680 (2009).
- Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24-26 (2011).
- Ross, P. J. et al. Activation of bovine somatic cell nuclear transfer embryos by PLCZ cRNA injection. Reproduction 137, 427-437 (2009).
- Salmon-Divon, M., Dvinge, H., Tammoja, K. & Bertone, P. PeakAnalyzer: Genome-wide annotation of chromatin binding and modification loci. BMC Bioinformatics 11, 415 (2010).
- Zhang, Y. et al. Model-based Analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

[¿ø¹®] Low cell number ChIP-seq using the ThruPLEX DNA-Seq Kit as a tool for epigenetic profiling