¾Ï ¿¬±¸¸¦ À§ÇÑ Á¦Ç° ¼±Åð¡À̵å
Solutions for Cancer Research
¾Ï(äß, Cancer) ȤÀº ¾Ç¼ºÁ¾¾ç(äÂàõðþåË, Malignant tumor, Malignant neoplasm)Àº ¼¼Æ÷ÁֱⰡ Á¶ÀýµÇÁö ¾Ê¾Æ ¼¼Æ÷ºÐ¿ÀÌ °è¼ÓµÇ´Â Áúº´À¸·Î, Æó¾Ï ¡¤ À§¾Ï ¡¤ À¯¹æ¾Ï ¡¤ ´ëÀå¾Ï µîÀÌ ÀÖ´Ù. ¾Ï°úÀÇ ½Î¿òÀº
¿©ÀüÈ÷ Èûµç ½Î¿òÀ¸·Î ³²¾ÆÀÖÁö¸¸, ¾Ï ¿¬±¸ ºÐ¾ßÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀº Å« Èñ¸ÁÀ» ÁØ´Ù. ´ÙÄ«¶ó¹ÙÀÌ¿À´Â ¾Ï ¹ÙÀÌ¿À¸¶Ä¿ ¿¬±¸, ´ÜÀÏ ¾Ï¼¼Æ÷ ºÐ¼®, ¾Ï ÈļºÀ¯ÀüÀÎÀÚ ºÐ¼®, HLA Typing, T-cell Ä¡·á
¹× ÇÁ·ÎÆÄÀϸµ, Ç×üġ·á, CRISPR/Cas9 À¯ÀüÀÚ ÆíÁý µîÀÇ ¾Ï ¿¬±¸¸¦ À§ÇÑ ´Ù¾çÇÑ Á¦Ç°°ú ±â¼úÀ» Á¦°øÇÑ´Ù.
1. ¾Ï ¹ÙÀÌ¿À¸¶Ä¿ (Cancer Biomarker Discovery)
Next Generation Sequencing (NGS) ±â¼úÀÇ ¹ßÀü¿¡ µû¶ó Á¾¾çÀ¯ÀüÀÚ (oncogene), Á¾¾ç¾ïÁ¦À¯ÀüÀÚ (tumor suppressor gene)¸¦ ÀÌ¿ëÇÑ ¾Ï ¹ÙÀÌ¿À¸¶Ä¿ ¿¬±¸°¡ °¡¼Óȵǰí ÀÖ´Ù. ´ÙÄ«¶ó¹ÙÀÌ¿À¿¡¼´Â Liquid biopsy (Circulating tumor DNA (ctDNA), Cell-free RNA (cfRNA), Cell-free DNA (cfDNA), Urine µî), FFPE »ùÇÃ, Exosome µî¿¡¼ ¾Ï ¹ÙÀÌ¿À¸¶Ä¿ À¯ÀüÀÚ¸¦ °ËÃâ ¹× ºÐ¼®ÇÒ ¼ö ÀÖ´Â Á¦Ç°À» Á¦°øÇÑ´Ù.
1) Low input mRNA ¡¤ DNA ¿°±â¼¿ ºÐ¼®
- ¼Ò·®ÀÇ RNA, DNA »ùÇÃÀ» À§ÇÑ NGS Library Preparation Kit
- FFPE RNA/DNA ¹× Liquid biopsy À¯·¡ÀÇ DNA, RNA ºÐ¼® °¡´É (ctDNA, cfRNA, cfDNA ¿Ü)
References
Selected publications citing the use of ThruPLEX-Plasma Seq Kit for non-invasive monitoring of tumor chemo-resistance
1. Mayrhofer, M. et al. Cell-free DNA profiling of metastatic prostate cancer reveals microsatellite instability, structural rearrangements and clonal hematopoiesis. Genome
Med. 10, 85-98 (2018).
2. Mouliere, F. et al. Detection of cell-free DNA fragmentation and copy number alterations in cerebrospinal fluid from glioma patients. EMBO. 12, e9323 (2018).
3. Murtaza, M. et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497, 108-112 (2013).
4. Patel, K. M. et al. Association of plasma and urinary mutant DNA with clinical outcomes in muscle invasive bladder cancer. Sci. Rep. 7, 5554 (2017).
5. Xia, Y. et al. Copy number variations in urine cell free DNA as biomarkers in advanced prostate cancer. Oncotarget 7, 35818-35831 (2016).
2) Exosomal RNA ºÐ¼®
- °í¼øµµÀÇ Exosome ºÐ¸®¸¦ À§ÇÑ µ¶ÀÚÀûÀÎ Capturem¢â membrane spin column
- Exosomal RNA ¹× miRNA ºÐ¼®À» À§ÇÑ SMARTer¢ç NGS ½Ã¸®Áî
References
Selected publications citing the use of SMARTer smRNA-Seq Kit for noninvasive miRNA profiling in prostate cancer diagnosis
1. Guelfi, G. et al. Next generation sequencing of urine exfoliated cells: an approach of prostate cancer microRNAs research. Sci. Rep. 8, 7111 (2018).
2. ´ÜÀÏ ¾Ï¼¼Æ÷ ºÐ¼® (Single Cancer Cell Analysis)
Á¾¾ç¼¼Æ÷¿¡¼ ³ªÅ¸³ª´Â º¹À⼺ (Complexity)°ú ÀÌÁú¼º (Heterogeneity)Àº Á¾¾ç¼¼Æ÷ (cancer cell), Áö¼Ó¼º ¾Ï¼¼Æ÷ (Cancer persister cells), ¼øȯÁ¾¾ç¼¼Æ÷ (Circulating Tumor Cell; CTC)¸¦ ´ÜÀϼ¼Æ÷
¼öÁØ¿¡¼ Çؼ®ÇÔÀ¸·Î½á ºÐ¼® °¡´ÉÇÏ´Ù. ±×·¯³ª ´ÜÀϼ¼Æ÷¸¦ ¿¬±¸ÇÏ·Á¸é ¾ÆÁÖ ¹Î°¨ÇÏ°í ÀçÇö¼º ³ôÀº ºÐ¼® ¹æ¹ýÀÌ ÇÊ¿äÇϸç, ´ÙÄ«¶ó¹ÙÀÌ¿À¿¡¼´Â µ¶ÀÚÀûÀÎ SMARTer¢ç ±â¼úÀ» ÀÌ¿ëÇÏ¿© ´ÜÀϼ¼Æ÷
¼öÁØÀÇ ¿°±â¼¿ ºÐ¼®À» À§ÇÑ Á¦Ç°À» Á¦°øÇÑ´Ù.
1) Single-cell Genome Sequencing
References
Selected publications citing the use of PicoPLEX technology for high performance CNV analysis and the genomic profiling of single cells from FFPE tumor tissues and circulating tumor cells, and G&T-seq
1. Lieselot D. et al. (2017). Performance of four modern whole genome amplification methods for copy number variant detection in single cells. Scientific Reports 7: 3422
2. Babayan A. et al. (2017). Comparative study of whole genome amplification and next generation sequencing performance of single cancer cells. Oncotarget 8: 56066-56080
3. Williamson S.C. et al. (2016). Vasculogenic mimicry in small cell lung cancer. Nature Communications 7: 13322
4. Morrow C. J. et al. (2016). Tumourigenic non-small-cell lung cancer mesenchymal circulating tumour cells: a clinical case study. Annals of Oncology 27 (6): 1155-1160
5. Premasekharan G. et al. (2016). An improved CTC isolation scheme for pairing with downstream genomics: Demonstrating clinical utility in metastatic prostate, lung and
pancreatic cancer. Cancer Letters 380 (1): 144 - 152
6. Cayrefourcq L. et al. (2015). Establishment and Characterization of a Cell Line from Human Circulating Colon Cancer Cells. Cancer Research 75 (5): 892-901
7. Macaulay I.C. et al. (2015). G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nature Methods 12: 519-522
2) Single-cell Transcriptome Sequencing
- SMART-Seq¢ç Technology : Single cell RNA-seq ºÐ¼®ÀÇ ±âÁØ
- Single cell full-length cDNA ÇÕ¼º°ú ÁõÆø
References
Selected publications citing the use of SMART-Seq solutions for single-cell RNA-seq in various different cancer applications
1. Chung W. et al. (2017). Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nature Communications 8: 15081
2. Zheng H. et al. (2018). Single-cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma. Hepatology doi: 10.1002/hep.29778. [Epub ahead of print]
3. Kim K.T. et al. (2015). Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells. Genome Biology 16: 127
4. Han K.Y. et al. (2018). SIDR: simultaneous isolation and parallel sequencing of genomic DNA and total RNA from single cells. Genome Research 28: 75-87
5. Chiu H.S. et al. (2018). Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context. Cell Reports 23(1): 297-312
3. ¾Ï ÈļºÀ¯ÀüÇÐ (Cancer Epigenomics)
¾Ï ÈļºÀ¯ÀüÇÐ ¿¬±¸¿¡¼´Â ¾Ï ƯÀÌÀû DNA-binding proteins, È÷½ºÅæ º¯Çü (histone-modification), DNA ¸ÞÆ¿È (DNA methylation) µîÀ» ºÐ¼®ÇÑ´Ù. Chromatin Immunoprecipitation Sequencing (ChIP-seq)
¹× ÃֽŠ±â¼úÀÎ Cut&Run-seqÀº NGS¸¦ ÀÌ¿ëÇÏ´Â ÈļºÀ¯ÀüÇÐ ¿¬±¸ ¹æ¹ýÀ¸·Î, ºÐ¼®À» À§ÇØ È¸¼öµÇ´Â DNAÀÇ ¾çÀÌ ¸Å¿ì Àû¾î ±Ø¼Ò·®ÀÇ DNA ºÐ¼®À» À§ÇÑ Æ¯¼öÇÑ Á¦Ç°ÀÌ ÇÊ¿äÇÏ´Ù.
Code |
Á¦Ç°¸í |
Ư¡ |
|
ThruPLEX¢ç DNA-seq Kit |
- ChIP-seq, Cut&Run-seq Library Preparation
- 3 Steps in one tube ÇÁ·ÎÅäÄÝ (hands-on 15ºÐ)
- Sample input: 50 pg - 50 ng of ChIP DNA
|
References
Selected publications citing the use of ThruPLEX technology for whole genome sequencing, targeted sequencing, CNV analysis and ChIP-seq studies in various types of cancers
1. McNair C. et al. (2018). Differential impact of RB status on E2F1 reprogramming in human cancer. Journal of Clinical Investigation 128(1): 341-358
2. Jeselsohn R. et al. (2018). Allele-Specific Chromatin Recruitment and Therapeutic Vulnerabilities of ESR1 Activating Mutations. Cancer Cell 33(2): 173-186
3. Cato L. et al. (2017). Development of Bag-1L as a therapeutic target in androgen receptordependent prostate cancer. eLife 6: e27159
4. Jin X. et al. (2017). Targeting glioma stem cells through combined BMI1 and EZH2 inhibition. Nature Medicine 23(11): 1352-1361
5. Wang X. et al. (2017). Purine synthesis promotes maintenance of brain tumor initiating cells in glioma. Nature Neuroscience 20: 661-673
6. Markus H. et al. (2018). Evaluation of pre-analytical factors affecting plasma DNA analysis. Scientific Reports 8: 7375
7. Patel K.M. et al. (2017). Association of Plasma and Urinary Mutant DNA With Clinical Outcomes In Muscle Invasive Bladder Cancer. Scientific Reports 7: 5554
8. Weiss G.J. et al. (2017). Tumor Cell-Free DNA Copy Number Instability Predicts Therapeutic Response to Immunotherapy. Clinical Cancer Research 23(17): 5074-5081
9. Klevebring D. et al. (2014). Evaluation of exome sequencing to estimate tumor burden in plasma. PLoS One 18;9(8): e104417
10. Murtaza M. et al. (2013). Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497: 108-112
4. ¸é¿ªÇ×¾ÏÁ¦ (Cancer Immunotherapy)
¼ö¼ú, ÈÇпä¹ý, ¹æ»ç¼±¿ä¹ý°ú °°Àº ÀüÅëÀûÀÎ ¾Ï Ä¡·á´Â ¾Ï ¸»±â ȯÀÚ¿¡°Ô ¸Å¿ì Á¦ÇÑµÈ È¿´É¸¸À» º¸¿©ÁÖ¾úÀ» »Ó¸¸ ¾Æ´Ï¶ó, ÈÇпä¹ý°ú ¹æ»ç¼±¿ä¹ýÀº °£È¤ »ó´çÈ÷ ½É°¢ÇÑ ºÎÀÛ¿ëÀ» ÀÏÀ¸Å²´Ù.
µû¶ó¼ º¸´Ù Çõ½ÅÀûÀÌ°í È¿°úÀûÀÎ ¾Ï Ä¡·á¸¦ À§ÇØ ¸é¿ªÇ×¾ÏÁ¦°¡ °³¹ßµÇ°í ÀÖÀ¸¸ç, ÀÌ´Â ³ôÀº Ư¼ö¼º°ú ¾ÈÀü¼º, ³·Àº ºÎÀÛ¿ë°ú °°Àº ÀåÁ¡À» °¡Áø´Ù. ´ÙÄ«¶ó¹ÙÀÌ¿À¿¡¼´Â ¸é¿ªÇ×¾ÏÁ¦ °³¹ßÀ» À§ÇÑ ´Ù¾çÇÑ ¿¬±¸ ÅøÀ» Á¦°øÇÏ°í ÀÖ´Ù.
1) T Cell Therapy¸¦ À§ÇÑ RetroNectin¢ç
- T cell¿¡ È¿À²ÀûÀÎ TCR/CAR À¯ÀüÀÚ µµÀÔÀ» À§ÇÑ Transduction enhancer
- T cell È®´ë¹è¾çÀÇ È¿À²À» ÁõÁø½ÃÅ°´Â Co-stimulator·Î½á Àû¿ë
- À¯ÀüÀÚÄ¡·á ÀÓ»ó ½ÇÇè ¸ñÀûÀ¸·Î Àü ¼¼°è 44°³ ±â°ü¿¡¼ 68°³ ÀÌ»óÀÇ ÇÁ·ÎÅäÄÝ¿¡ Àû¿ë
References
Selected publications citing RetroNectin GMP grade reagent use in TCR/CAR therapies
1. Kochenderfer, J. N., et al. (2012) B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-
antigenreceptor-transduced T cells. Blood 119 (12):2709-2720
2. Robbins, P. F., et al. (2011) Tumor Regression in Patients with Metastatic Synovial Cell Sarcoma and Melanoma Using Genetically Engineered Lymphocytes Reactive With
NY-ESO-1. J. Clin. Oncol. 29 (7):917-924
3. Zhang, L., et al. (2013) Evaluation of ¥ã-retroviral vectors that mediate the inducible expression of IL-12 for clinical application. J. Immunother. 35(5):430-439
4. Brentjens, R., et al. (2013) CD19-Targeted T Cells Rapidly Induce Molecular Remissions in Adults with Chemotherapy-Refractory Acute Lymphoblastic Leukemia.
Science Translational Medicine 5 (177):177ra38
5. Ramos C. A. et al. (2017). Clinical and Immunological Responses after CD30-Specific Chimeric Antigen Receptor-Redirected Lymphocytes. The Journal of Clinical
Investigation 127 (9): 3462-71
6. Tang X.Y. et al. (2016). Third-Generation CD28/4-1BB Chimeric Antigen Receptor T Cells for Chemotherapy Relapsed or Refractory Acute Lymphoblastic Leukaemia:
A NonRandomised, Open-Label Phase I Trial Protocol. BMJ Open 6 (12)
7. Ali S.A. et al. (2016). T Cells Expressing an Anti-B-Cell Maturation Antigen Chimeric Antigen Receptor Cause Remissions of Multiple Myeloma. Blood 128 (13): 1688-1700
8. Stroncek D.F. et al. (2016). Myeloid Cells in Peripheral Blood Mononuclear Cell Concentrates Inhibit the Expansion of Chimeric Antigen Receptor T Cells.
Cytotherapy 18 (7): 893-901
9. Tomuleasa C. et al. (2018). Chimeric Antigen Receptor T-Cells for the Treatment of B-Cell Acute Lymphoblastic Leukemia. Frontiers in Immunology: 19 February
2) TCR, BCR Profiling ºÐ¼®À» À§ÇÑ SMARTer¢ç Immune Profiling Kits
- 5¡¯ RACE (Rapid Amplification cDNA Ends)¿Í NGS ±â¼úÀÇ Á¶ÇÕÀ¸·Î º¸´Ù °£ÆíÇÏ°í °·ÂÇÑ Profiling
- TCR¥á, TCR¥â chain ¶Ç´Â BCR Heavy chain (H), Kappa chain (¥ê), Lamda chain (¥ë) °³º° ¶Ç´Â µ¿½Ã ºÐ¼®
3) Antibody Therapeutics
- Monoclonal antibody, Antibody drug conjugates (ADC) Ç×üÀǾàÇ°, Ä¡·áÁ¦ ¿¬±¸
- Construct Á¦ÀÛºÎÅÍ Á¤Á¦, ºÐ¼®À» À§ÇÑ Á¦Ç°
References
Selected publications citing the use of In-Fusion HD Cloning for HTP antibody cloning
1. Spidel J.L. et al. (2016). Rapid high-throughput cloning and stable expression of antibodies in HEK293 cells. Journal of Immunological Methods 439: 50-58
2. Chen C.G. et al. (2014). One-step zero-background IgG reformatting of phage-displayed antibody fragments enabling rapid and high-throughput lead identification.
Nucleic Acids Research 42 (4): e26
3. Meng W et al. (2015). Efficient generation of monoclonal antibodies from single rhesus macaque antibody secreting cells. mAbs 7 (4): 707-718
5. HLA Typing
Human Leukocyte Antigen (HLA)´Â ¸Å¿ì ´ÙÇü¼ºÀÌ ³ôÀº ¿µ¿ª (highly polymorphic region)À¸·Î, ¸é¿ª Á¶Àý¿¡ °ü·ÃµÈ ¿©·¯ °³ÀÇ À¯ÀüÀÚ·Î ±¸¼ºµÇ¾îÀÖ´Ù. HLA Typing ±â¹ýÀº ¾Ï ¹ßº´±âÀü°ú °ü·ÃµÈ ¹Ýº¹ÀûÀÎ
µ¹¿¬º¯ÀÌ (target recurrent mutation)¿Í ÇÖ½ºÆÌ (hotspot site)À» ¿¬±¸ÇÏ´Â ¾ÆÁÖ Áß¿äÇÑ ºÐ¼® ¹æ¹ýÀÌ´Ù. HLA TypingÀ» À§ÇÑ NGS´Â º¹ÀâÇÑ DNA ÁÖÇüÀ» ±¤¹üÀ§ÇÏ°Ô ºÐ¼®Çϱâ À§ÇÏ¿© ³ôÀº ƯÀ̼º°ú Á¤È®¼ºÀ» ¿ä±¸ÇÑ´Ù.
´ÙÄ«¶ó¹ÙÀÌ¿À´Â Targeted sequencingÀ» À§ÇÑ high-fidelity polymerase¿Í NGS Library preparation kit¸¦ Á¦°øÇÑ´Ù.
1) Targeted sequencingÀ» À§ÇÑ High-fidelity PCR Polymerase
- Targeted Sequencing (NGS, Sanger)À» À§ÇÑ Target amplification¿¡ ÃÖÀû
- ¸Å¿ì ³ôÀº Á¤È®µµ·Î GC ÇÔ·®ÀÌ ³ôÀº long fragment target ÁõÆø (>30 kb)
References
Selected publications citing the use of PrimeSTAR GXL and/or TaKaRa LA Taq enzymes for HLA Typing
1. Liu C. et al. (2018). Accurate Typing of Human Leukocyte Antigen Class I Genes by Oxford Nanopore Sequencing. Journal of Molecular Diagnostics 2: 006
2. Xu Y.-P. et al. (2017). A novel HLA-E allele, HLA-E*01:01:01:06, identified in a Chinese Leukemia patient. HLA 89: 260-262
3. Yin Y. et al. (2016). Application of High-Throughput Next-Generation Sequencing for HLA Typing on Buccal Extracted DNA: Results from over 10,000 Donor Recruitment
Samples. PLOS ONE 11(10): e0165810.
4. Mayor N.P. et al. (2015). HLA Typing for the Next Generation. PLOS ONE 10 (5): e0127153.
5. Lan, J. H. et al. (2015). Impact of Three Illumina Library Construction Methods on GC Bias and HLA Genotype Calling. Human Immunology 76(2-3), 166-175
6. Ozaki Y. et al. (2015). Cost-efficient multiplex PCR for routine genotyping of up to nine classical HLA loci in a single analytical run of multiple samples by next
generation sequencing. BMC Genomics 16:318
7. Ozaki Y. et al. (2013). HLA-DRB1, -DRB3, -DRB4 and -DRB5 genotyping at a super-high resolution level by long range PCR and high-throughput sequencing.
Tissue Antigens 83: 10-16
2) HLA TypingÀ» À§ÇÑ Whole Genome Amplification (WGA)
References
Selected publications citing the use of SMARTer PicoPLEX technology for HLA Typing
1. Murphy N.M. et al. (2016). Haplotyping the human leukocyte antigen system from single chromosomes. Scientific Reports 6: 30381
2. Png E. et al. (2011) A genome-wide association study of hepatitis B vaccine response in an Indonesian population reveals multiple independent risk variants
in the HLA region. Human Molecular Genetics 20 (19): 3893-3898
6. Gene Editing for Cancer Therapy & Drug Discovery
CRISPR/Cas9 À¯ÀüÀÚ ÆíÁý ±â¼úÀº ±âÁ¸ÀÇ ZFN, TALEN À¯ÀüÀÚ ÆíÁý¿¡ ºñÇØ º¸´Ù È¿À²ÀûÀ¸·Î À¯ÀüÀÚ ÆíÁýÀ» ¼öÇàÇÒ ¼ö ÀÖÀ¸¸ç, ¾î¶°ÇÑ À¯±âü¿¡¼µµ Ç¥ÀûƯÀÌÀûÀÎ À¯ÀüÀÚ ÆíÁý (Site-specific genomic targeting & editing)À»
ÇÒ ¼ö ÀÖ´Ù. ¾Ï ¿¬±¸¿¡¼ CRISPR/Cas9 À¯ÀüÀÚ ÆíÁý ±â¼úÀº Á¾¾çÀ¯ÀüÀÚÀÇ ¸ÞÄ¿´ÏÁò ºÐ¼®, Ç×¾ÏÁ¦ °³¹ßÀÇ ´ë»ó À¯ÀüÀÚ µ¿Á¤, ¼¼Æ÷ ±â¹Ý Ä¡·áÀÇ ¾Ï¼¼Æ÷ ½Äº° µî ´Ù¾çÇÏ°Ô Àû¿ë °¡´ÉÇÏ´Ù. ´ÙÄ«¶ó¹ÙÀÌ¿À¿¡¼´Â CRISPR/Cas9 Gene EditingÀ»
À§ÇÑ Guide-it¢â ½Ã¸®Á Á¦°øÇÏ°í ÀÖ´Ù.
* Guide-it¢â CRISPR/Cas9 Àü Á¦Ç°Àº ¿©±â¸¦ È®ÀÎÇϼ¼¿ä.
References
Selected publications citing the use of various Guide-it CRISPR/Cas9 kits for different cancer applications
1. Lao Y.H. et al. (2018). HPV Oncogene Manipulation Using Nonvirally Delivered CRISPR/Cas9 or Natronobacterium gregoryi Argonaute. Advanced Science: 1700540
2. Kagoya Y. et al. (2018). DOT1L inhibition attenuates graft-versus-host disease by allogeneic T cells in adoptive immunotherapy models. Nature Communications 9: 1915